Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Dec 3;68(Pt 1):o5. doi: 10.1107/S1600536811050616

1,2-Bis(dibromo­meth­yl)benzene

Sin-Kai Fang a, Hong-Yi Lin a, Kew-Yu Chen a,*
PMCID: PMC3254285  PMID: 22259552

Abstract

In the title compound, C8H6Br4, intra­molecular C—H⋯Br hydrogen bonds generate two S(6) rings. The two geminal bromine-atom substituents point to opposite sides of the aromatic ring system. In the crystal, mol­ecules are linked by inter­molecular π–π inter­actions with centroid–centroid distances of 3.727 (9) and 3.858 (9) Å.

Related literature

For the preparation of the title compound, see: Ghorbani-Vaghei et al. (2009). For its applications, see: Chen et al. (2002, 2006, 2007); Chow et al. (2005); Jansen et al. (2010); Pandithavidana et al. (2009); Swartz et al. (2005). For related structures, see: Kuś & Jones (2003); Qin et al. (2005); Sim et al. (2001). For graph-set theory, see: Bernstein et al. (1995).graphic file with name e-68-000o5-scheme1.jpg

Experimental

Crystal data

  • C8H6Br4

  • M r = 421.77

  • Triclinic, Inline graphic

  • a = 7.0222 (8) Å

  • b = 7.7313 (9) Å

  • c = 10.5927 (12) Å

  • α = 108.473 (10)°

  • β = 97.108 (9)°

  • γ = 90.394 (9)°

  • V = 540.61 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 14.83 mm−1

  • T = 297 K

  • 0.58 × 0.48 × 0.36 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.122, T max = 1.000

  • 4575 measured reflections

  • 2469 independent reflections

  • 1297 reflections with I > 2σ(I)

  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.091

  • wR(F 2) = 0.258

  • S = 1.04

  • 2469 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 1.62 e Å−3

  • Δρmin = −1.27 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811050616/aa2031sup1.cif

e-68-000o5-sup1.cif (13.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050616/aa2031Isup2.hkl

e-68-000o5-Isup2.hkl (121.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811050616/aa2031Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯Br1 0.98 2.64 3.364 (16) 131
C8—H8A⋯Br2 0.98 2.78 3.420 (16) 124

Acknowledgments

This work was supported by the National Science Council (NSC 99–2113-M-035–001-MY2) and Feng Chia University in Taiwan.

supplementary crystallographic information

Comment

The title compound and its derivatives are useful reagents to build a naphthalene ring (Chen et al., 2002, 2006, 2007; Chow et al., 2005; Jansen et al., 2010; Pandithavidana et al., 2009). In addition, they have been prepared as potential precursors to pentacene derivatives (Swartz et al., 2005).

The ORTEP diagram of the title compound is shown in Fig. 1. Two intramolecular C—H···Br hydrogen bonds (see Table 1) generate two S(6) ring motifs (Bernstein et al., 1995). The two geminal bromine substituents point to opposite sides of the aromatic ring system. In the crystal structure (Fig. 2), the molecules are stabilized by intermolecular π–π interactions. Cg1···Cg1i distance is 3.727 (9)Å, symmetry code: (i) -1 - x, -y, 1 - z; Cg1···Cg1ii distance is 3.858 (9)Å, symmetry code: (ii) -x, -y, 1 - z; Cg1 is the centroid of the C2/C7 ring).

Experimental

The title compound was synthesized by bromination of o-xylene with N,N,N',N'- tetrabromobenzene-1,3-disulfonamide in CCl4, according to the literature method (Ghorbani-Vaghei et al., 2009). Colorless crystals suitable for the crystallographic studies were isolated over a period of four weeks by slow evaporation from the chloroform solution.

Refinement

H atoms were positioned geometrically (C—H = 0.93 and 0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A section of the crystal packing of the title compound, viewed along the a axis. H atoms have been omitted for clarity.

Crystal data

C8H6Br4 Z = 2
Mr = 421.77 F(000) = 388
Triclinic, P1 Dx = 2.591 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.0222 (8) Å Cell parameters from 1856 reflections
b = 7.7313 (9) Å θ = 2.8–29.1°
c = 10.5927 (12) Å µ = 14.83 mm1
α = 108.473 (10)° T = 297 K
β = 97.108 (9)° Parallelepiped, colorless
γ = 90.394 (9)° 0.58 × 0.48 × 0.36 mm
V = 540.61 (11) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 2469 independent reflections
Radiation source: fine-focus sealed tube 1297 reflections with I > 2σ(I)
graphite Rint = 0.073
ω scans θmax = 29.2°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −9→8
Tmin = 0.122, Tmax = 1.000 k = −10→10
4575 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.091 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.258 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0875P)2 + 18.1246P] where P = (Fo2 + 2Fc2)/3
2469 reflections (Δ/σ)max < 0.001
109 parameters Δρmax = 1.62 e Å3
0 restraints Δρmin = −1.27 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 1.0868 (3) 0.1807 (3) 0.90582 (19) 0.0434 (6)
Br2 0.6361 (3) 0.1787 (3) 0.9231 (2) 0.0492 (6)
Br3 0.5867 (3) 0.5842 (3) 0.7641 (2) 0.0488 (6)
Br4 1.0292 (3) 0.5783 (3) 0.7275 (2) 0.0478 (6)
C1 0.832 (3) 0.078 (3) 0.8116 (17) 0.036 (4)
H1A 0.8311 −0.0533 0.8003 0.043*
C2 0.796 (2) 0.094 (2) 0.6741 (16) 0.030 (4)
C3 0.769 (2) −0.070 (3) 0.5681 (18) 0.035 (4)
H3A 0.7804 −0.1803 0.5862 0.042*
C4 0.725 (2) −0.073 (2) 0.4342 (17) 0.033 (4)
H4A 0.7044 −0.1821 0.3639 0.040*
C5 0.714 (2) 0.097 (3) 0.4101 (16) 0.032 (4)
H5A 0.6924 0.1004 0.3224 0.039*
C6 0.735 (2) 0.255 (2) 0.5136 (16) 0.031 (4)
H6A 0.7183 0.3644 0.4954 0.037*
C7 0.781 (2) 0.261 (2) 0.6455 (15) 0.024 (3)
C8 0.821 (2) 0.436 (2) 0.7532 (17) 0.033 (4)
H8A 0.8533 0.4123 0.8387 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0330 (10) 0.0605 (15) 0.0388 (10) 0.0108 (9) −0.0006 (8) 0.0207 (10)
Br2 0.0364 (11) 0.0769 (17) 0.0443 (11) 0.0028 (10) 0.0117 (9) 0.0313 (11)
Br3 0.0386 (11) 0.0406 (13) 0.0671 (14) 0.0169 (9) 0.0072 (9) 0.0165 (11)
Br4 0.0406 (11) 0.0372 (13) 0.0653 (14) −0.0084 (8) 0.0102 (9) 0.0148 (10)
C1 0.047 (10) 0.027 (10) 0.041 (10) −0.009 (8) 0.002 (8) 0.024 (8)
C2 0.019 (7) 0.033 (11) 0.033 (9) 0.003 (7) 0.000 (6) 0.008 (8)
C3 0.016 (8) 0.038 (11) 0.051 (11) 0.004 (7) 0.006 (7) 0.014 (9)
C4 0.040 (10) 0.026 (10) 0.033 (9) 0.005 (7) 0.017 (8) 0.003 (8)
C5 0.024 (8) 0.042 (11) 0.025 (8) 0.015 (7) 0.008 (7) −0.001 (8)
C6 0.042 (10) 0.015 (9) 0.029 (8) 0.006 (7) 0.009 (7) −0.003 (7)
C7 0.019 (7) 0.026 (9) 0.032 (8) 0.003 (6) 0.007 (6) 0.013 (7)
C8 0.032 (9) 0.030 (11) 0.038 (9) −0.011 (7) 0.003 (7) 0.014 (8)

Geometric parameters (Å, °)

Br1—C1 1.965 (17) C3—H3A 0.9300
Br2—C1 1.932 (19) C4—C5 1.42 (3)
Br3—C8 2.003 (18) C4—H4A 0.9300
Br4—C8 1.922 (15) C5—C6 1.35 (2)
C1—C2 1.49 (2) C5—H5A 0.9300
C1—H1A 0.9800 C6—C7 1.38 (2)
C2—C7 1.42 (2) C6—H6A 0.9300
C2—C3 1.40 (2) C7—C8 1.47 (2)
C3—C4 1.41 (2) C8—H8A 0.9800
C2—C1—Br2 113.8 (12) C6—C5—C4 120.4 (16)
C2—C1—Br1 112.7 (11) C6—C5—H5A 119.8
Br2—C1—Br1 110.0 (9) C4—C5—H5A 119.8
C2—C1—H1A 106.6 C5—C6—C7 122.7 (17)
Br2—C1—H1A 106.6 C5—C6—H6A 118.6
Br1—C1—H1A 106.6 C7—C6—H6A 118.6
C7—C2—C3 119.0 (16) C6—C7—C2 118.7 (15)
C7—C2—C1 124.9 (15) C6—C7—C8 120.6 (15)
C3—C2—C1 116.0 (16) C2—C7—C8 120.7 (14)
C4—C3—C2 121.2 (17) C7—C8—Br4 112.8 (11)
C4—C3—H3A 119.4 C7—C8—Br3 110.0 (11)
C2—C3—H3A 119.4 Br4—C8—Br3 108.1 (9)
C5—C4—C3 117.9 (16) C7—C8—H8A 108.6
C5—C4—H4A 121.1 Br4—C8—H8A 108.6
C3—C4—H4A 121.1 Br3—C8—H8A 108.6
Br2—C1—C2—C7 61.2 (18) C5—C6—C7—C8 174.1 (15)
Br1—C1—C2—C7 −65.0 (19) C3—C2—C7—C6 2(2)
Br2—C1—C2—C3 −117.0 (14) C1—C2—C7—C6 −176.1 (15)
Br1—C1—C2—C3 116.9 (14) C3—C2—C7—C8 −175.9 (14)
C7—C2—C3—C4 −1(2) C1—C2—C7—C8 6(2)
C1—C2—C3—C4 177.2 (14) C6—C7—C8—Br4 −58.1 (18)
C2—C3—C4—C5 2(2) C2—C7—C8—Br4 119.7 (14)
C3—C4—C5—C6 −3(2) C6—C7—C8—Br3 62.6 (16)
C4—C5—C6—C7 5(3) C2—C7—C8—Br3 −119.6 (13)
C5—C6—C7—C2 −4(2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8A···Br1 0.98 2.64 3.364 (16) 131
C8—H8A···Br2 0.98 2.78 3.420 (16) 124

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2031).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, K.-Y., Chow, T. J., Chou, P.-T., Cheng, Y.-M. & Tsai, S.-H. (2002). Tetrahedron Lett. 43, 8115–8119.
  4. Chen, K.-Y., Hsieh, C.-C., Cheng, Y.-M., Lai, C.-H., Chou, P.-T. & Chow, T. J. (2006). J. Phys. Chem. A, 110, 12136–12144. [DOI] [PubMed]
  5. Chen, K.-Y., Hsing, H.-H., Wu, C.-C., Hwang, J.-J. & Chow, T. J. (2007). Chem. Commun. 10, 1065–1067. [DOI] [PubMed]
  6. Chow, T. J., Pan, Y.-T., Yeh, Y.-S., Wen, Y.-S., Chen, K.-Y. & Chou, P.-T. (2005). Tetrahedron, 61, 6967–6975.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  9. Ghorbani-Vaghei, R., Chegini, M., Veisi, H. & Karimi-Tabar, M. (2009). Tetrahedron Lett. 50, 1861–1865.
  10. Jansen, G., Kahlert, B., Klärner, F.-G., Boese, R. & Bläser, D. (2010). J. Am. Chem. Soc., 132, 8581–8592. [DOI] [PubMed]
  11. Kuś, P. & Jones, P. G. (2003). Acta Cryst. E59, o899–o900.
  12. Pandithavidana, D. R., Poloukhtine, A. & Popik, V. V. (2009). J. Am. Chem. Soc. 131, 351–356. [DOI] [PubMed]
  13. Qin, S., Yin, G. & Zhou, B. (2005). Acta Cryst. E61, o3257–o3258.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sim, W., Lee, J. Y., Kim, J. S., Kim, J.-G. & Suh, I.-H. (2001). Acta Cryst. C57, 293–294. [DOI] [PubMed]
  16. Swartz, C. R., Parkin, S. R., Bullock, J. E., Anthony, J. E., Mayer, A. C. & Malliaras, G. G. (2005). Org. Lett. 7, 3163–3166. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811050616/aa2031sup1.cif

e-68-000o5-sup1.cif (13.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811050616/aa2031Isup2.hkl

e-68-000o5-Isup2.hkl (121.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811050616/aa2031Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES