Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Dec 21;68(Pt 1):m71–m72. doi: 10.1107/S1600536811053566

Bis­(μ-pyridine-2,3-dicarboxyl­ato)bis­[aqua­(3-carb­oxy­pyridine-2-carboxyl­ato)indium(III)] tetra­hydrate

H Eshtiagh-Hosseini a, M Mirzaei a, A Mousavinezhad a, M Necas b, J T Mague c,*
PMCID: PMC3254334  PMID: 22259367

Abstract

In the binuclear centrosymmetric title compound, [In2(C7H3NO4)2(C7H4NO4)2(H2O)2]·4H2O, which contains both pyridine-2,3-dicarboxyl­ate and 3-carb­oxy­pyridine-2-carboxyl­ate ligands, the InIII atom is six-coordinated in a distorted octa­hedral geometry. One pyridine ligand is N,O-chelated while the other is N,O-chelated and at the same time bridging to the other via the second carboxyl group. In the crystal, an extensive O—H⋯O hydrogen-bonding network, involving the coordinated and lattice water mol­ecules and the carboxyl groups of the ligands, together with C—H⋯O and π–π inter­actions [centroid–centroid distance = 3.793 (1) Å], leads to the formation of a three-dimensional structure.

Related literature

For metal complexes with polycarboxyl­ate ligands, see: Aghabozorg, Daneshvar et al. (2007); Aghabozorg, Khadivi et al. (2008); Aghabozorg, Ramezanipour et al. (2006); Eshtiagh-Hosseini et al. (2010); Mirzaei et al. (2011). For examples of self-assembly, see: Kondo et al. (1999); Beobide et al. (2006). For a discussion of hard–soft acid base concepts, see: Schlemper et al. (1967). For examples of π–π stacking, see: Janiak (2000). For three-dimensional network structures, see: Krygowski et al. (1998).graphic file with name e-68-00m71-scheme1.jpg

Experimental

Crystal data

  • [In2(C7H3NO4)2(C7H4NO4)2(H2O)2]·4H2O

  • M r = 1000.17

  • Triclinic, Inline graphic

  • a = 8.0166 (3) Å

  • b = 10.0890 (4) Å

  • c = 11.9838 (5) Å

  • α = 110.069 (4)°

  • β = 96.236 (3)°

  • γ = 109.076 (3)°

  • V = 833.36 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.49 mm−1

  • T = 120 K

  • 0.40 × 0.30 × 0.30 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire2 detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.588, T max = 0.664

  • 10774 measured reflections

  • 3373 independent reflections

  • 3168 reflections with I > 2σ(I)

  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.016

  • wR(F 2) = 0.039

  • S = 1.10

  • 3373 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811053566/su2349sup1.cif

e-68-00m71-sup1.cif (27.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811053566/su2349Isup2.hkl

e-68-00m71-Isup2.hkl (165.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H91⋯O11i 0.84 1.75 2.5938 (19) 178
O9—H92⋯O3i 0.84 1.80 2.6402 (17) 175
O11—H112⋯O7ii 0.84 1.95 2.7595 (18) 162
O10—H101⋯O5iii 0.84 1.97 2.8065 (18) 175
O10—H102⋯O7iv 0.84 1.88 2.7237 (19) 178
O4—H4O⋯O10 0.84 1.67 2.5124 (17) 178
C4—H4⋯O1v 0.95 2.35 3.231 (2) 154
C5—H5⋯O6vi 0.95 2.36 3.293 (2) 168
C11—H11⋯O3vii 0.95 2.61 3.495 (2) 156
C12—H12⋯O2vii 0.95 2.33 2.993 (2) 126

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

The authors wish to thank to the Ferdowsi University of Mashhad for financial support (grant No. P/2098).

supplementary crystallographic information

Comment

For several years our research group, among others, has been interested in the synthesis of new coordination compounds from polycarboxylic acids and amines using a proton transfer methodology (Aghabozorg, Daneshvar, et al., 2007; Aghabozorg, Khadivi, et al., 2008; Aghabozorg, Ramezanipour, et al., 2006; Eshtiagh-Hosseini et al., 2010; Mirzaei et al., 2011). Polycarboxylate ligands are versatile because of their diversity of coordination modes and also because of their ability to initiate self assembly processes by supramolecular interactions (Kondo et al., 1999; Beobide et al., 2006). In the majority of the complexes obtained by proton-transfer methods the metal complex is anionic with the cation derived from the amine used in the synthesis. Among these multicarboxylate ligands, pyridine-2,3-dicarboxylic acid (py-2,3dcH2) has rarely been used under the conditions generally employed in our studies. In the course of this work we prepared the title binuclear indium(II) compound, whose crystal structure we report on herein.

In addition to being a neutral complex, the title compound (Fig. 1) appears to be the first indiumIII complex N,O chelated by one py-2,3-dcH- ion and one py-2,3-dc2-ion, with the latter using the carboxyl group in the 3-position to bridge to a second metal. In the resulting centrosymmetric dimer, the coordination sphere of each metal is completed by a water molecule. The O4N2 coordination sphere adopts a distorted octahedral geometry with the largest departure being the 75.30 (5)° angles subtended by the chelating ligands (Fig. 1). The average In—O distance of 2.1253 (14) Å is slightly shorter than the average In—N of 2.2478 (17) Å. This can be explained by Pearson's hard and soft acid-base concept (Schlemper et al., 1967).

The solid state structure can be described as chains of dimers associated via hydrogen bonding interactions between the coordinated water molecule, the monoprotonated carboxyl group and oxygen atoms in the pyridine dicarboxylate ligand as well as C—H···O interactons between ring hydrogen atoms and carboxylate oxygen atoms (Table 1). Additionally there is a slipped π-π stacking interaction (Fig. 2) between the (N1,C1-C5) ring and its counterpart in the dimer at -x+1, -y+2, -z+1 [perpendicular separation = 3.107 (1) Å, centroid-to-centroid distance = 3.793 (1) Å, slippage = 1.37 Å, angle between planes = 11.28 (8)° (Janiak, 2000)]. The chains are associated via hydrogen bonding interactions between the lattice water molecules, the coordinated water molecule and oxygen atoms of the carboxylate ligands (Table 1, Fig. 3) to complete the three-dimensional network structure (Krygowski et al., 1998).

A final interaction of significance is a complementary π-π stacking interaction (Fig. 2) between the C13═O6 moiety in one half of the dimer and the (N2,C8-C12) ring in the other half (centroid-to-centroid distance = 3.347 (2) Å, angle of the line joining the centroids to the plane of the ring = 74.7 (1)°).

Experimental

A solution of In2(SO4)3.xH2O (34 mg, 0.06 mmol) in water (5 ml) was added dropwise to an aqueous solution of pyridine-2,3-dicarboxylic acid (10 mg, 0.06 mmol) and 2-amino-6-methyl pyridine (13 mg, 0.12 mmol) in a 1:1:2 molar ratio at reflux. The solution was cooled to room temperature and upon slow evaporation, X-ray quality crystals were formed which were collected and washed with distilled water.

Refinement

The OH and water H-atoms were located in difference Fourier maps and were refined as riding atoms with Uiso(H) = 1.2Ueq(O). The C-bound H-atoms were placed in calculated positions and treated as riding atoms: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of the local coordination environments of InIII atoms in the title molecule, with 50% probability thermal ellipsoids. Primed atoms are related to the non-primed atoms by the center of symmetry.

Fig. 2.

Fig. 2.

Perspective view of the π···π and C—O···π stacking interactions (dashed lines) in the title compound (In = large green circles, H = small green circles, O = red circles, N = blue circles).

Fig. 3.

Fig. 3.

Perspective view of the crystal packing of the title compound, showing the intermolecular hydrogen bonds as dashed lines (In = large green circles, H = small green circles, O = red circles, N = blue circles; see Table 1 for details).

Crystal data

[In2(C7H3NO4)2(C7H4NO4)2(H2O)2]·4H2O Z = 1
Mr = 1000.17 F(000) = 496
Triclinic, P1 Dx = 1.993 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.0166 (3) Å Cell parameters from 8569 reflections
b = 10.0890 (4) Å θ = 2.8–27.2°
c = 11.9838 (5) Å µ = 1.49 mm1
α = 110.069 (4)° T = 120 K
β = 96.236 (3)° Block, colourless
γ = 109.076 (3)° 0.40 × 0.30 × 0.30 mm
V = 833.36 (6) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire2 detector 3373 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3168 reflections with I > 2σ(I)
graphite Rint = 0.013
Detector resolution: 8.4353 pixels mm-1 θmax = 27.2°, θmin = 3.3°
ω scan h = −8→10
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) k = −12→12
Tmin = 0.588, Tmax = 0.664 l = −15→15
10774 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016 H-atom parameters constrained
wR(F2) = 0.039 w = 1/[σ2(Fo2) + (0.0197P)2 + 0.3217P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max = 0.002
3373 reflections Δρmax = 0.38 e Å3
254 parameters Δρmin = −0.31 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0083 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
In1 0.716069 (17) 0.792788 (13) 0.730349 (10) 0.00941 (5)
O1 0.81082 (17) 0.78122 (15) 0.57022 (11) 0.0132 (3)
O2 0.77166 (18) 0.81433 (15) 0.39645 (11) 0.0165 (3)
O3 0.43118 (19) 0.60530 (14) 0.22385 (11) 0.0154 (3)
O4 0.38691 (19) 0.80920 (15) 0.21595 (11) 0.0179 (3)
H4O 0.3870 0.7721 0.1416 0.021*
O5 0.64775 (17) 0.86624 (14) 0.90207 (10) 0.0127 (3)
O6 0.73152 (19) 1.05169 (15) 1.08983 (11) 0.0171 (3)
O7 0.92356 (19) 1.40964 (15) 1.17662 (11) 0.0165 (3)
O8 1.10615 (18) 1.31541 (14) 1.24362 (11) 0.0144 (3)
O9 0.50749 (18) 0.56958 (14) 0.66940 (11) 0.0168 (3)
H91 0.3972 0.5539 0.6473 0.020*
H92 0.5325 0.5180 0.7057 0.020*
N1 0.5111 (2) 0.83155 (16) 0.61329 (13) 0.0105 (3)
N2 0.9159 (2) 1.03454 (17) 0.83361 (13) 0.0104 (3)
C1 0.5347 (2) 0.80161 (19) 0.49914 (15) 0.0101 (4)
C2 0.4018 (3) 0.78340 (19) 0.40403 (16) 0.0120 (4)
C3 0.2455 (3) 0.8044 (2) 0.43128 (17) 0.0159 (4)
H3 0.1527 0.7938 0.3685 0.019*
C4 0.2254 (3) 0.8406 (2) 0.54992 (17) 0.0165 (4)
H4 0.1209 0.8583 0.5699 0.020*
C5 0.3595 (3) 0.8508 (2) 0.63908 (16) 0.0135 (4)
H5 0.3442 0.8717 0.7200 0.016*
C6 0.7195 (2) 0.79807 (19) 0.48430 (15) 0.0107 (4)
C7 0.4120 (3) 0.7255 (2) 0.27281 (16) 0.0124 (4)
C8 0.9017 (3) 1.0999 (2) 0.94915 (15) 0.0100 (3)
C9 1.0201 (3) 1.2475 (2) 1.02728 (15) 0.0113 (4)
C10 1.1540 (3) 1.3289 (2) 0.98329 (16) 0.0153 (4)
H10 1.2361 1.4305 1.0348 0.018*
C11 1.1667 (3) 1.2612 (2) 0.86462 (16) 0.0158 (4)
H11 1.2570 1.3154 0.8335 0.019*
C12 1.0452 (3) 1.1130 (2) 0.79220 (16) 0.0131 (4)
H12 1.0537 1.0655 0.7107 0.016*
C13 0.7493 (3) 1.0014 (2) 0.98602 (15) 0.0113 (4)
C14 1.0119 (3) 1.3270 (2) 1.15813 (15) 0.0121 (4)
O10 0.39345 (18) 0.69562 (15) −0.00496 (11) 0.0167 (3)
H101 0.4704 0.7512 −0.0293 0.020*
H102 0.2944 0.6616 −0.0572 0.020*
O11 0.83456 (19) 0.48403 (16) 0.39983 (12) 0.0217 (3)
H111 0.8943 0.5668 0.4609 0.026*
H112 0.8849 0.4755 0.3413 0.026*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
In1 0.00961 (8) 0.01133 (8) 0.00717 (7) 0.00362 (6) 0.00213 (5) 0.00400 (5)
O1 0.0104 (7) 0.0217 (7) 0.0097 (6) 0.0077 (6) 0.0033 (5) 0.0072 (5)
O2 0.0164 (8) 0.0241 (7) 0.0127 (6) 0.0077 (6) 0.0072 (6) 0.0105 (6)
O3 0.0209 (8) 0.0118 (6) 0.0123 (6) 0.0055 (6) 0.0014 (6) 0.0050 (5)
O4 0.0275 (9) 0.0184 (7) 0.0112 (6) 0.0112 (6) 0.0027 (6) 0.0084 (5)
O5 0.0112 (7) 0.0143 (6) 0.0108 (6) 0.0026 (6) 0.0040 (5) 0.0049 (5)
O6 0.0181 (8) 0.0196 (7) 0.0113 (6) 0.0046 (6) 0.0074 (6) 0.0049 (5)
O7 0.0191 (8) 0.0186 (7) 0.0129 (6) 0.0119 (6) 0.0014 (6) 0.0039 (5)
O8 0.0164 (8) 0.0191 (7) 0.0098 (6) 0.0102 (6) 0.0018 (5) 0.0055 (5)
O9 0.0132 (7) 0.0150 (7) 0.0218 (7) 0.0033 (6) −0.0003 (6) 0.0106 (6)
N1 0.0104 (8) 0.0097 (7) 0.0111 (7) 0.0032 (6) 0.0033 (6) 0.0046 (6)
N2 0.0103 (8) 0.0124 (7) 0.0098 (7) 0.0047 (7) 0.0026 (6) 0.0054 (6)
C1 0.0104 (10) 0.0068 (8) 0.0122 (8) 0.0017 (7) 0.0028 (7) 0.0044 (7)
C2 0.0130 (10) 0.0083 (8) 0.0135 (8) 0.0021 (8) 0.0013 (7) 0.0056 (7)
C3 0.0128 (10) 0.0173 (9) 0.0183 (9) 0.0062 (8) 0.0001 (8) 0.0087 (8)
C4 0.0124 (10) 0.0161 (9) 0.0238 (10) 0.0074 (8) 0.0067 (8) 0.0089 (8)
C5 0.0145 (10) 0.0109 (9) 0.0158 (9) 0.0048 (8) 0.0068 (8) 0.0057 (7)
C6 0.0100 (10) 0.0088 (8) 0.0100 (8) 0.0015 (7) 0.0013 (7) 0.0023 (7)
C7 0.0072 (9) 0.0135 (9) 0.0136 (8) 0.0008 (8) −0.0013 (7) 0.0063 (7)
C8 0.0104 (10) 0.0131 (9) 0.0094 (8) 0.0063 (8) 0.0027 (7) 0.0062 (7)
C9 0.0115 (10) 0.0142 (9) 0.0100 (8) 0.0068 (8) 0.0012 (7) 0.0058 (7)
C10 0.0149 (11) 0.0139 (9) 0.0139 (8) 0.0027 (8) 0.0007 (8) 0.0054 (7)
C11 0.0147 (11) 0.0171 (9) 0.0153 (9) 0.0027 (8) 0.0056 (8) 0.0090 (8)
C12 0.0142 (10) 0.0158 (9) 0.0107 (8) 0.0057 (8) 0.0050 (7) 0.0065 (7)
C13 0.0104 (10) 0.0148 (9) 0.0113 (8) 0.0070 (8) 0.0017 (7) 0.0067 (7)
C14 0.0103 (10) 0.0110 (9) 0.0115 (8) 0.0009 (8) 0.0015 (7) 0.0038 (7)
O10 0.0133 (7) 0.0224 (7) 0.0134 (6) 0.0027 (6) 0.0014 (5) 0.0106 (6)
O11 0.0204 (8) 0.0215 (7) 0.0203 (7) 0.0069 (6) 0.0059 (6) 0.0061 (6)

Geometric parameters (Å, °)

In1—O8i 2.1153 (12) C1—C2 1.390 (2)
In1—O1 2.1199 (12) C1—C6 1.522 (2)
In1—O9 2.1319 (13) C2—C3 1.392 (3)
In1—O5 2.1324 (11) C2—C7 1.500 (2)
In1—N2 2.2339 (15) C3—C4 1.383 (3)
In1—N1 2.2618 (14) C3—H3 0.9500
O1—C6 1.289 (2) C4—C5 1.383 (3)
O2—C6 1.216 (2) C4—H4 0.9500
O3—C7 1.221 (2) C5—H5 0.9500
O4—C7 1.302 (2) C8—C9 1.386 (3)
O4—H4O 0.8401 C8—C13 1.517 (3)
O5—C13 1.300 (2) C9—C10 1.396 (3)
O6—C13 1.216 (2) C9—C14 1.517 (2)
O7—C14 1.240 (2) C10—C11 1.382 (2)
O8—C14 1.268 (2) C10—H10 0.9500
O8—In1i 2.1152 (12) C11—C12 1.383 (3)
O9—H91 0.8400 C11—H11 0.9500
O9—H92 0.8400 C12—H12 0.9500
N1—C5 1.343 (2) O10—H101 0.8400
N1—C1 1.345 (2) O10—H102 0.8400
N2—C12 1.339 (2) O11—H111 0.8400
N2—C8 1.350 (2) O11—H112 0.8400
O8i—In1—O1 83.58 (5) C2—C3—H3 120.0
O8i—In1—O9 84.44 (5) C5—C4—C3 119.06 (17)
O1—In1—O9 101.63 (5) C5—C4—H4 120.5
O8i—In1—O5 104.07 (5) C3—C4—H4 120.5
O1—In1—O5 165.16 (5) N1—C5—C4 121.17 (16)
O9—In1—O5 91.87 (5) N1—C5—H5 119.4
O8i—In1—N2 97.32 (5) C4—C5—H5 119.4
O1—In1—N2 91.20 (5) O2—C6—O1 125.21 (17)
O9—In1—N2 167.17 (5) O2—C6—C1 119.13 (15)
O5—In1—N2 75.36 (5) O1—C6—C1 115.64 (14)
O8i—In1—N1 153.16 (5) O3—C7—O4 124.16 (16)
O1—In1—N1 75.34 (5) O3—C7—C2 121.80 (15)
O9—In1—N1 83.75 (5) O4—C7—C2 113.89 (15)
O5—In1—N1 100.33 (5) N2—C8—C9 121.27 (16)
N2—In1—N1 99.52 (5) N2—C8—C13 115.55 (15)
C6—O1—In1 119.19 (11) C9—C8—C13 123.18 (15)
C7—O4—H4O 112.4 C8—C9—C10 118.45 (16)
C13—O5—In1 118.93 (11) C8—C9—C14 123.82 (16)
C14—O8—In1i 140.24 (11) C10—C9—C14 117.73 (16)
In1—O9—H91 121.2 C11—C10—C9 119.83 (18)
In1—O9—H92 112.4 C11—C10—H10 120.1
H91—O9—H92 117.5 C9—C10—H10 120.1
C5—N1—C1 120.12 (15) C10—C11—C12 118.58 (18)
C5—N1—In1 126.80 (11) C10—C11—H11 120.7
C1—N1—In1 111.76 (11) C12—C11—H11 120.7
C12—N2—C8 119.97 (16) N2—C12—C11 121.89 (16)
C12—N2—In1 126.11 (11) N2—C12—H12 119.1
C8—N2—In1 113.89 (12) C11—C12—H12 119.1
N1—C1—C2 121.65 (16) O6—C13—O5 124.90 (17)
N1—C1—C6 115.19 (15) O6—C13—C8 119.05 (16)
C2—C1—C6 123.09 (15) O5—C13—C8 116.05 (14)
C1—C2—C3 118.00 (16) O7—C14—O8 123.27 (15)
C1—C2—C7 122.31 (16) O7—C14—C9 117.88 (15)
C3—C2—C7 119.33 (16) O8—C14—C9 118.63 (15)
C4—C3—C2 119.91 (17) H101—O10—H102 105.0
C4—C3—H3 120.0 H111—O11—H112 111.8
O8i—In1—O1—C6 162.67 (13) C2—C3—C4—C5 −2.0 (3)
O9—In1—O1—C6 79.72 (13) C1—N1—C5—C4 −0.1 (3)
O5—In1—O1—C6 −75.3 (2) In1—N1—C5—C4 −165.89 (13)
N2—In1—O1—C6 −100.10 (13) C3—C4—C5—N1 2.5 (3)
N1—In1—O1—C6 −0.57 (12) In1—O1—C6—O2 169.57 (14)
O8i—In1—O5—C13 89.72 (12) In1—O1—C6—C1 −8.69 (19)
O1—In1—O5—C13 −30.0 (2) N1—C1—C6—O2 −159.83 (16)
O9—In1—O5—C13 174.45 (12) C2—C1—C6—O2 16.9 (3)
N2—In1—O5—C13 −4.31 (11) N1—C1—C6—O1 18.5 (2)
N1—In1—O5—C13 −101.56 (12) C2—C1—C6—O1 −164.68 (16)
O8i—In1—N1—C5 138.04 (14) C1—C2—C7—O3 53.6 (3)
O1—In1—N1—C5 177.42 (15) C3—C2—C7—O3 −119.3 (2)
O9—In1—N1—C5 73.64 (15) C1—C2—C7—O4 −130.59 (18)
O5—In1—N1—C5 −17.12 (15) C3—C2—C7—O4 56.5 (2)
N2—In1—N1—C5 −93.83 (15) C12—N2—C8—C9 −0.6 (2)
O8i—In1—N1—C1 −28.73 (19) In1—N2—C8—C9 177.46 (12)
O1—In1—N1—C1 10.65 (11) C12—N2—C8—C13 179.38 (15)
O9—In1—N1—C1 −93.12 (12) In1—N2—C8—C13 −2.56 (18)
O5—In1—N1—C1 176.11 (12) N2—C8—C9—C10 0.9 (2)
N2—In1—N1—C1 99.40 (12) C13—C8—C9—C10 −179.06 (16)
O8i—In1—N2—C12 78.74 (14) N2—C8—C9—C14 −179.73 (16)
O1—In1—N2—C12 −4.94 (14) C13—C8—C9—C14 0.3 (3)
O9—In1—N2—C12 175.85 (19) C8—C9—C10—C11 −0.5 (3)
O5—In1—N2—C12 −178.56 (15) C14—C9—C10—C11 −179.94 (16)
N1—In1—N2—C12 −80.27 (14) C9—C10—C11—C12 −0.1 (3)
O8i—In1—N2—C8 −99.18 (12) C8—N2—C12—C11 −0.1 (3)
O1—In1—N2—C8 177.14 (12) In1—N2—C12—C11 −177.90 (13)
O9—In1—N2—C8 −2.1 (3) C10—C11—C12—N2 0.4 (3)
O5—In1—N2—C8 3.52 (11) In1—O5—C13—O6 −174.77 (13)
N1—In1—N2—C8 101.80 (12) In1—O5—C13—C8 4.34 (18)
C5—N1—C1—C2 −2.7 (3) N2—C8—C13—O6 178.18 (15)
In1—N1—C1—C2 165.07 (13) C9—C8—C13—O6 −1.8 (3)
C5—N1—C1—C6 174.13 (15) N2—C8—C13—O5 −1.0 (2)
In1—N1—C1—C6 −18.10 (17) C9—C8—C13—O5 179.00 (15)
N1—C1—C2—C3 3.0 (3) In1i—O8—C14—O7 −176.98 (13)
C6—C1—C2—C3 −173.52 (16) In1i—O8—C14—C9 −2.6 (3)
N1—C1—C2—C7 −169.95 (16) C8—C9—C14—O7 −93.8 (2)
C6—C1—C2—C7 13.5 (3) C10—C9—C14—O7 85.6 (2)
C1—C2—C3—C4 −0.7 (3) C8—C9—C14—O8 91.5 (2)
C7—C2—C3—C4 172.56 (17) C10—C9—C14—O8 −89.1 (2)

Symmetry codes: (i) −x+2, −y+2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O9—H91···O11ii 0.84 1.75 2.5938 (19) 178
O9—H92···O3ii 0.84 1.80 2.6402 (17) 175
O11—H112···O7iii 0.84 1.95 2.7595 (18) 162
O10—H101···O5iv 0.84 1.97 2.8065 (18) 175
O10—H102···O7v 0.84 1.88 2.7237 (19) 178
O4—H4O···O10 0.84 1.67 2.5124 (17) 178
C4—H4···O1vi 0.95 2.35 3.231 (2) 154
C5—H5···O6vii 0.95 2.36 3.293 (2) 168
C11—H11···O3viii 0.95 2.61 3.495 (2) 156
C12—H12···O2viii 0.95 2.33 2.993 (2) 126

Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z−1; (iv) x, y, z−1; (v) −x+1, −y+2, −z+1; (vi) x−1, y, z; (vii) −x+1, −y+2, −z+2; (viii) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2349).

References

  1. Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468–m2469. [DOI] [PMC free article] [PubMed]
  2. Aghabozorg, H., Khadivi, R., Ghadermazi, M., Pasdar, H. & Hooshmand, S. (2008). Acta Cryst. E64, m267–m268. [DOI] [PMC free article] [PubMed]
  3. Aghabozorg, H., Ramezanipour, F., Kheirollahi, P., Saeia, A. A., Shokrollahi, A., Shamsipur, M., Manteghi, F., Soleimannejad, J. & Sharif, M. A. (2006). Z. Anorg. Allg. Chem. 632, 147–154.
  4. Beobide, G., Castillo, O., Luque, A., García-Couceiro, U., García -Terán, J. P. & Román, P. (2006). Inorg. Chem. 45, 5367–5382. [DOI] [PubMed]
  5. Eshtiagh-Hosseini, H., Hassanpoor, A., Alfi, N., Mirzaei, M., Fromm, K. M., Shokrollahi, A., Gschwind, F. & Karami, E. (2010). J. Coord. Chem. 63, 3175–3186.
  6. Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  7. Kondo, M., Okubo, T., Asami, A., Noro, S. I., Yoshitomi, T., Kitagawa, S., Ishii, T., Matsuzaka, H. & Seki, K. (1999). Angew. Chem. Int. Ed. 38, 140–143.
  8. Krygowski, T. M., Grabowski, S. J. & Konarski, J. (1998). Tetrahedron, 54, 11311–11316.
  9. Mirzaei, M., Aghabozorg, H. & Eshtiagh-Hosseini, H. (2011). J. Iran. Chem. Soc. 8, 580–607.
  10. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  11. Schlemper, E. O. (1967). Inorg. Chem. 6, 2012–2017.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811053566/su2349sup1.cif

e-68-00m71-sup1.cif (27.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811053566/su2349Isup2.hkl

e-68-00m71-Isup2.hkl (165.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES