Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Dec 21;68(Pt 1):m76. doi: 10.1107/S1600536811053785

Bis(1,10-phenanthroline-5,6-dione-κ2 N,N′)silver(I) 2-hy­droxy-3,5-dinitro­benzoate

Shen-Tang Wang a, Guang-Bo Che a, Chun-Bo Liu a,*, Xing Wang a, Ling Liu a
PMCID: PMC3254338  PMID: 22259371

Abstract

In the cation of the title salt, [Ag(C12H6N2O2)2](C7H3N2O7), the AgI atom is coordinated in a distorted tetra­hedral geometry by four N atoms from two 1,10-phenanthroline-5,6-dione ligands, while the 3,5-dinitro­salicylate anion has only a short contact [2.847 (6) Å] between one of its O atoms and the AgI atom. The dihedral angle between the two 1,10-phenanthroline-5,6-dione ligands is 58.4 (1)°. There is an intra­molecular O—H⋯O hydrogen bond in the 3,5-dinitro­salicylate anion.

Related literature

For general background to the structures and potential applications of supra­molecular architectures with 1,10-phenantroline-5,6-dione and 3,5-dinitro­salicylic acid, see: Hiort et al. (1993); Song et al. (2007); Che et al. (2008); Onuegbu et al. (2009). For the synthesis of the 1,10-phenantroline-5,6-dione ligand, see: Dickeson & Sumers (1970).graphic file with name e-68-00m76-scheme1.jpg

Experimental

Crystal data

  • [Ag(C12H6N2O2)2](C7H3N2O7)

  • M r = 755.36

  • Monoclinic, Inline graphic

  • a = 11.757 (2) Å

  • b = 18.297 (4) Å

  • c = 13.223 (3) Å

  • β = 103.91 (3)°

  • V = 2761.1 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 174 K

  • 0.30 × 0.24 × 0.20 mm

Data collection

  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.780, T max = 0.910

  • 12726 measured reflections

  • 5059 independent reflections

  • 3914 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.083

  • wR(F 2) = 0.163

  • S = 1.11

  • 5013 reflections

  • 442 parameters

  • 22 restraints

  • H-atom parameters constrained

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.72 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811053785/vn2025sup1.cif

e-68-00m76-sup1.cif (32.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811053785/vn2025Isup2.hkl

e-68-00m76-Isup2.hkl (240.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ag1—N1 2.400 (6)
Ag1—N2 2.351 (6)
Ag1—N3 2.337 (6)
Ag1—N4 2.377 (6)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯O8 0.82 1.71 2.457 (9) 151

Acknowledgments

The authors thank Jiangsu University for supporting this work.

supplementary crystallographic information

Comment

The design and construction of supramolecular architectures have received considerable attention in recent years, mostly motivated by their intriguing structural features and potential applications in molecular adsorption, molecular sensing, magnetism, catalysis and non-linear optics (Che et al., 2008). Metal complexes with 1,10-phenantroline-5,6-dione (L) and 3,5-dinitrosalicylic acid as important ligands for the construction of metal-organic supramolecular architectures have been increasingly studied over recent years (Hiort et al., 1993; Onuegbu et al., 2009; Song et al., 2007). We report herein on the crystal structure of the title compound (Fig. 1). The molecular structure of the title compound, is made up of one [AgL2]+ cation and one 3,5-dinitrosalicylate anion. The AgI atom is surrounded by four N atoms from two 1,10-phenanthroline-5,6-dione ligands, while the 3,5-dinitrosalicylate ligand is uncoordinated. In the compound the dihedral angle between the phendione ligand A (C1-C12, N1, N2, O1 and O2) and B (C13-C24, N3, N4, O3, and O4) is 58.4 (1)°. The dihedral angle between B and 3,5-dinitrosalicylate ligand C (C25-C31, N5, N6, O5-O11) is 56.1 (2)°. The dihedral angle between A and C is 2.4 (9)°, suggesting that the planes of rings A and C are almost parallel. In addition, in the 3,5-dinitrosalicylate ligand, there is one intramolecular O–H···O hydrogen bond (Fig. 2).

Experimental

The L ligand was synthesized according to the literature method (Dickeson & Sumers, 1970). The title compound was synthesized under hydrothermal conditions. A mixture of L (0.042 g, 0.2 mmol), 3,5-dinitrosalicylic acid (0.046 g, 0.2 mmol), AgNO3 (0.034 g, 0.2 mmol) and water (10 mL) was placed in a 25 mL Teflon-lined autoclave and heated for 3 days at 433 K under autogenous pressure. Upon cooling and opening the bomb, yellow block-shaped crystals were obtained, then washed with water and dried in air.

Refinement

All H atoms on C atoms were positioned geometrically and refined as riding atoms, with (C—H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2 Ueq(C). The hydrogen atom of the hydroxyl group was located in a difference Fourier map, and was refined with a suitable O—H distance restraint; Uiso(H) = 1.5 Ueq(O). The geometry of the aromatic rings was regularized using distance and planariety restraints.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. All H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the crystal packing of the title compound, showing the O–H···O hydrogen bonds interaction.

Crystal data

C24H12AgN4O4·C7H3N2O7 F(000) = 1512
Mr = 755.36 Dx = 1.817 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5197 reflections
a = 11.757 (2) Å θ = 3.2–25.4°
b = 18.297 (4) Å µ = 0.81 mm1
c = 13.223 (3) Å T = 174 K
β = 103.91 (3)° Prism, yellow
V = 2761.1 (11) Å3 0.3 × 0.24 × 0.2 mm
Z = 4

Data collection

Oxford Diffraction Gemini R Ultra diffractometer 5059 independent reflections
Radiation source: fine-focus sealed tube 3914 reflections with I > 2σ(I)
graphite Rint = 0.052
ω scans θmax = 25.4°, θmin = 3.2°
Absorption correction: multi-scan SADABS (Bruker, 2002) h = −14→11
Tmin = 0.780, Tmax = 0.910 k = −17→22
12726 measured reflections l = −15→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0354P)2 + 13.4705P] where P = (Fo2 + 2Fc2)/3
5013 reflections (Δ/σ)max < 0.001
442 parameters Δρmax = 1.11 e Å3
22 restraints Δρmin = −0.72 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag1 0.21081 (6) 0.44038 (3) 0.52487 (5) 0.0540 (2)
C1 0.4793 (7) 0.5137 (4) 0.6222 (5) 0.0435 (18)
H1 0.4399 0.5580 0.6074 0.052*
C2 0.5976 (7) 0.5157 (4) 0.6690 (6) 0.048 (2)
H2 0.6371 0.5599 0.6845 0.058*
C3 0.6552 (7) 0.4497 (4) 0.6920 (6) 0.0470 (19)
H3 0.7345 0.4488 0.7248 0.056*
C4 0.5941 (6) 0.3844 (4) 0.6659 (5) 0.0380 (16)
C5 0.6515 (9) 0.3155 (4) 0.6883 (7) 0.062 (2)
C6 0.5895 (7) 0.2505 (5) 0.6710 (7) 0.063 (2)
C7 0.4678 (6) 0.2544 (4) 0.6244 (5) 0.0431 (18)
C8 0.3994 (8) 0.1885 (4) 0.6037 (6) 0.053 (2)
H8 0.4340 0.1433 0.6229 0.064*
C9 0.2836 (9) 0.1930 (5) 0.5557 (7) 0.063 (2)
H9 0.2388 0.1508 0.5403 0.075*
C10 0.2342 (7) 0.2594 (5) 0.5305 (7) 0.055 (2)
H10 0.1552 0.2613 0.4966 0.066*
C11 0.4090 (6) 0.3201 (3) 0.5978 (5) 0.0338 (16)
C12 0.4738 (5) 0.3869 (3) 0.6196 (5) 0.0335 (16)
C13 0.0848 (7) 0.4147 (4) 0.2775 (7) 0.055 (2)
H13 0.1080 0.3666 0.2933 0.066*
C14 0.0374 (8) 0.4324 (5) 0.1743 (7) 0.061 (2)
H14 0.0287 0.3972 0.1223 0.073*
C15 0.0034 (7) 0.5036 (5) 0.1506 (6) 0.053 (2)
H15 −0.0298 0.5170 0.0820 0.064*
C16 0.0190 (6) 0.5564 (4) 0.2312 (5) 0.0432 (18)
C17 −0.0122 (5) 0.6312 (4) 0.2098 (5) 0.052 (2)
C18 −0.0077 (7) 0.6805 (4) 0.2948 (6) 0.055 (2)
C19 0.0460 (6) 0.6571 (4) 0.3993 (6) 0.0447 (18)
C20 0.0688 (7) 0.7058 (4) 0.4853 (7) 0.055 (2)
H20 0.0483 0.7548 0.4749 0.067*
C21 0.1205 (8) 0.6816 (5) 0.5829 (7) 0.059 (2)
H21 0.1348 0.7131 0.6398 0.071*
C22 0.1506 (7) 0.6090 (5) 0.5945 (6) 0.056 (2)
H22 0.1865 0.5925 0.6611 0.067*
C23 0.0809 (6) 0.5844 (3) 0.4175 (5) 0.0369 (16)
C24 0.0632 (5) 0.5330 (3) 0.3334 (5) 0.0322 (15)
C25 0.6149 (7) 0.4146 (4) 0.9278 (5) 0.0419 (18)
C26 0.5083 (7) 0.4530 (4) 0.8867 (5) 0.0411 (18)
C27 0.4075 (6) 0.4103 (4) 0.8430 (5) 0.0388 (17)
C28 0.4092 (7) 0.3351 (4) 0.8460 (5) 0.0433 (18)
H28 0.3421 0.3080 0.8181 0.052*
C29 0.5165 (8) 0.3002 (4) 0.8928 (5) 0.0434 (19)
C30 0.6177 (7) 0.3387 (4) 0.9327 (6) 0.0435 (18)
H30 0.6871 0.3143 0.9625 0.052*
C31 0.2956 (8) 0.4467 (5) 0.7881 (6) 0.050 (2)
N1 0.4178 (5) 0.4524 (3) 0.5970 (4) 0.0347 (13)
N2 0.2931 (5) 0.3228 (3) 0.5518 (5) 0.0399 (14)
N3 0.0992 (5) 0.4629 (3) 0.3562 (5) 0.0422 (15)
N4 0.1319 (5) 0.5605 (3) 0.5164 (5) 0.0423 (14)
N5 0.7268 (7) 0.4516 (5) 0.9629 (5) 0.0587 (19)
N6 0.5177 (8) 0.2213 (4) 0.9005 (5) 0.0560 (19)
O1 0.7645 (7) 0.3121 (4) 0.7270 (6) 0.088 (2)
O2 0.6419 (7) 0.1890 (4) 0.6988 (6) 0.096 (2)
O3 −0.0430 (5) 0.6542 (3) 0.1162 (4) 0.0700 (18)
O4 −0.0502 (6) 0.7445 (3) 0.2780 (5) 0.080 (2)
O5 0.8165 (6) 0.4147 (4) 0.9745 (6) 0.091 (2)
O6 0.7295 (6) 0.5175 (4) 0.9763 (6) 0.085 (2)
O7 0.5032 (6) 0.5236 (3) 0.8852 (4) 0.0608 (16)
H7 0.4365 0.5366 0.8565 0.091*
O8 0.2947 (6) 0.5172 (3) 0.7949 (5) 0.0684 (17)
O9 0.2133 (5) 0.4109 (4) 0.7368 (5) 0.0641 (16)
O10 0.4296 (7) 0.1876 (3) 0.8584 (5) 0.0713 (19)
O11 0.6097 (6) 0.1916 (3) 0.9511 (5) 0.0684 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.0472 (4) 0.0491 (4) 0.0609 (4) 0.0150 (3) 0.0036 (3) 0.0149 (3)
C1 0.056 (5) 0.038 (4) 0.039 (4) −0.007 (4) 0.015 (4) 0.001 (3)
C2 0.054 (5) 0.046 (5) 0.048 (5) −0.011 (4) 0.019 (4) −0.001 (4)
C3 0.033 (4) 0.065 (6) 0.042 (4) −0.003 (4) 0.008 (3) −0.006 (4)
C4 0.036 (4) 0.043 (4) 0.037 (4) 0.007 (3) 0.013 (3) 0.001 (3)
C5 0.084 (7) 0.059 (5) 0.049 (5) 0.022 (5) 0.028 (5) 0.008 (4)
C6 0.067 (5) 0.068 (6) 0.057 (5) 0.007 (5) 0.019 (4) −0.001 (5)
C7 0.056 (4) 0.045 (4) 0.033 (4) 0.005 (4) 0.020 (3) 0.001 (3)
C8 0.085 (5) 0.031 (4) 0.049 (5) 0.014 (4) 0.026 (4) 0.008 (4)
C9 0.077 (5) 0.053 (5) 0.064 (6) −0.012 (5) 0.027 (4) −0.010 (5)
C10 0.043 (5) 0.050 (5) 0.072 (6) −0.002 (4) 0.014 (4) −0.009 (4)
C11 0.044 (4) 0.027 (4) 0.031 (4) 0.008 (3) 0.011 (3) 0.001 (3)
C12 0.041 (4) 0.031 (4) 0.030 (4) −0.001 (3) 0.011 (3) 0.002 (3)
C13 0.051 (5) 0.036 (4) 0.072 (6) −0.001 (4) 0.005 (4) −0.002 (4)
C14 0.056 (6) 0.057 (6) 0.063 (6) −0.002 (4) 0.002 (4) −0.024 (5)
C15 0.047 (5) 0.060 (6) 0.047 (5) −0.001 (4) 0.003 (4) −0.002 (4)
C16 0.032 (4) 0.042 (4) 0.053 (5) 0.000 (3) 0.006 (3) 0.004 (4)
C17 0.041 (5) 0.053 (5) 0.058 (5) 0.003 (4) 0.002 (4) 0.019 (4)
C18 0.041 (5) 0.049 (5) 0.071 (6) −0.004 (4) 0.004 (4) 0.006 (5)
C19 0.038 (4) 0.037 (4) 0.058 (5) 0.001 (3) 0.008 (4) 0.001 (4)
C20 0.045 (5) 0.035 (4) 0.084 (7) 0.001 (4) 0.012 (5) −0.008 (4)
C21 0.052 (5) 0.055 (5) 0.069 (6) 0.003 (4) 0.012 (5) −0.017 (5)
C22 0.047 (5) 0.070 (6) 0.047 (5) −0.002 (4) 0.004 (4) −0.005 (4)
C23 0.028 (4) 0.036 (4) 0.045 (4) 0.003 (3) 0.005 (3) 0.002 (3)
C24 0.022 (3) 0.029 (4) 0.045 (4) 0.000 (3) 0.006 (3) 0.004 (3)
C25 0.056 (5) 0.040 (4) 0.029 (4) −0.010 (4) 0.008 (3) −0.003 (3)
C26 0.061 (5) 0.033 (4) 0.033 (4) 0.001 (4) 0.018 (4) −0.003 (3)
C27 0.045 (5) 0.039 (4) 0.035 (4) 0.001 (3) 0.016 (3) 0.003 (3)
C28 0.061 (5) 0.042 (4) 0.032 (4) −0.008 (4) 0.019 (4) −0.002 (3)
C29 0.071 (6) 0.030 (4) 0.035 (4) 0.006 (4) 0.024 (4) 0.006 (3)
C30 0.047 (5) 0.046 (5) 0.038 (4) 0.004 (4) 0.013 (3) 0.004 (3)
C31 0.060 (6) 0.049 (5) 0.048 (5) 0.014 (4) 0.024 (4) 0.011 (4)
N1 0.036 (3) 0.032 (3) 0.035 (3) 0.002 (3) 0.008 (3) 0.000 (3)
N2 0.038 (4) 0.037 (3) 0.045 (3) 0.000 (3) 0.009 (3) −0.001 (3)
N3 0.038 (4) 0.032 (3) 0.053 (4) 0.000 (3) 0.004 (3) −0.002 (3)
N4 0.037 (3) 0.043 (4) 0.046 (4) 0.003 (3) 0.007 (3) 0.006 (3)
N5 0.059 (5) 0.071 (6) 0.042 (4) −0.011 (4) 0.006 (3) −0.007 (4)
N6 0.091 (6) 0.039 (4) 0.046 (4) 0.003 (4) 0.032 (4) 0.003 (3)
O1 0.081 (5) 0.099 (6) 0.084 (5) 0.033 (4) 0.020 (4) 0.021 (4)
O2 0.086 (6) 0.079 (5) 0.110 (6) 0.022 (4) −0.003 (4) 0.000 (4)
O3 0.067 (4) 0.071 (4) 0.067 (4) 0.003 (3) 0.005 (3) 0.024 (3)
O4 0.097 (5) 0.040 (4) 0.094 (5) 0.018 (3) 0.005 (4) 0.016 (3)
O5 0.055 (5) 0.099 (6) 0.113 (6) −0.004 (4) 0.008 (4) −0.033 (5)
O6 0.089 (5) 0.050 (4) 0.098 (5) −0.024 (4) −0.016 (4) 0.002 (4)
O7 0.086 (5) 0.039 (3) 0.058 (4) 0.000 (3) 0.019 (3) −0.001 (3)
O8 0.080 (5) 0.057 (4) 0.073 (4) 0.022 (3) 0.028 (3) 0.010 (3)
O9 0.041 (4) 0.081 (4) 0.069 (4) 0.004 (3) 0.012 (3) −0.002 (3)
O10 0.110 (6) 0.039 (3) 0.066 (4) −0.015 (4) 0.025 (4) −0.003 (3)
O11 0.088 (5) 0.042 (3) 0.083 (4) 0.017 (3) 0.036 (4) 0.021 (3)

Geometric parameters (Å, °)

Ag1—N1 2.400 (6) C16—C24 1.394 (7)
Ag1—N2 2.351 (6) C16—C17 1.428 (7)
Ag1—N3 2.337 (6) C17—O3 1.275 (7)
Ag1—N4 2.377 (6) C17—C18 1.432 (8)
Ag1—O9 2.847 (6) C18—O4 1.272 (9)
C1—N1 1.333 (9) C18—C19 1.438 (8)
C1—C2 1.380 (11) C19—C23 1.397 (7)
C1—H1 0.9300 C19—C20 1.419 (11)
C2—C3 1.383 (11) C20—C21 1.361 (12)
C2—H2 0.9300 C20—H20 0.9300
C3—C4 1.394 (10) C21—C22 1.374 (12)
C3—H3 0.9300 C21—H21 0.9300
C4—C12 1.400 (7) C22—N4 1.340 (10)
C4—C5 1.426 (8) C22—H22 0.9300
C5—O1 1.304 (11) C23—N4 1.373 (8)
C5—C6 1.385 (8) C23—C24 1.433 (7)
C6—O2 1.293 (10) C24—N3 1.362 (8)
C6—C7 1.417 (8) C25—C30 1.390 (10)
C7—C11 1.390 (7) C25—C26 1.426 (10)
C7—C8 1.438 (11) C25—N5 1.454 (10)
C8—C9 1.358 (12) C26—O7 1.292 (8)
C8—H8 0.9300 C26—C27 1.421 (10)
C9—C10 1.353 (12) C27—C28 1.377 (10)
C9—H9 0.9300 C27—C31 1.498 (11)
C10—N2 1.347 (10) C28—C29 1.416 (11)
C10—H10 0.9300 C28—H28 0.9300
C11—N2 1.353 (8) C29—C30 1.374 (11)
C11—C12 1.432 (7) C29—N6 1.448 (10)
C12—N1 1.365 (8) C30—H30 0.9300
C13—N3 1.343 (10) C31—O9 1.228 (10)
C13—C14 1.383 (12) C31—O8 1.293 (10)
C13—H13 0.9300 N5—O6 1.218 (9)
C14—C15 1.376 (11) N5—O5 1.230 (9)
C14—H14 0.9300 N6—O10 1.218 (9)
C15—C16 1.417 (10) N6—O11 1.252 (9)
C15—H15 0.9300 O7—H7 0.8200
N3—Ag1—N2 115.0 (2) O4—C18—C19 120.4 (7)
N3—Ag1—N4 70.7 (2) C17—C18—C19 119.4 (7)
N2—Ag1—N4 174.1 (2) C23—C19—C20 117.9 (7)
N3—Ag1—N1 130.3 (2) C23—C19—C18 119.5 (7)
N2—Ag1—N1 71.5 (2) C20—C19—C18 122.5 (7)
N4—Ag1—N1 106.3 (2) C21—C20—C19 120.8 (7)
N3—Ag1—O9 147.53 (19) C21—C20—H20 119.6
N2—Ag1—O9 76.74 (19) C19—C20—H20 119.6
N4—Ag1—O9 97.64 (19) C20—C21—C22 117.7 (8)
N1—Ag1—O9 81.75 (18) C20—C21—H21 121.2
N1—C1—C2 124.2 (7) C22—C21—H21 121.2
N1—C1—H1 117.9 N4—C22—C21 124.4 (8)
C2—C1—H1 117.9 N4—C22—H22 117.8
C1—C2—C3 117.6 (7) C21—C22—H22 117.8
C1—C2—H2 121.2 N4—C23—C19 120.7 (6)
C3—C2—H2 121.2 N4—C23—C24 118.6 (6)
C2—C3—C4 119.9 (7) C19—C23—C24 120.6 (6)
C2—C3—H3 120.0 N3—C24—C16 121.9 (6)
C4—C3—H3 120.0 N3—C24—C23 117.9 (6)
C3—C4—C12 119.1 (6) C16—C24—C23 120.1 (6)
C3—C4—C5 121.0 (7) C30—C25—C26 121.4 (7)
C12—C4—C5 119.9 (7) C30—C25—N5 116.1 (7)
O1—C5—C6 118.0 (7) C26—C25—N5 122.5 (7)
O1—C5—C4 120.7 (8) O7—C26—C27 120.8 (7)
C6—C5—C4 121.3 (9) O7—C26—C25 122.2 (7)
O2—C6—C5 120.3 (8) C27—C26—C25 117.0 (6)
O2—C6—C7 122.0 (8) C28—C27—C26 122.2 (7)
C5—C6—C7 117.8 (8) C28—C27—C31 117.6 (7)
C11—C7—C6 122.8 (7) C26—C27—C31 120.2 (7)
C11—C7—C8 117.1 (7) C27—C28—C29 117.9 (7)
C6—C7—C8 120.1 (7) C27—C28—H28 121.0
C9—C8—C7 119.4 (7) C29—C28—H28 121.0
C9—C8—H8 120.3 C30—C29—C28 122.3 (7)
C7—C8—H8 120.3 C30—C29—N6 119.4 (8)
C10—C9—C8 119.5 (8) C28—C29—N6 118.2 (8)
C10—C9—H9 120.3 C29—C30—C25 119.0 (7)
C8—C9—H9 120.3 C29—C30—H30 120.5
N2—C10—C9 123.6 (8) C25—C30—H30 120.5
N2—C10—H10 118.2 O9—C31—O8 123.5 (8)
C9—C10—H10 118.2 O9—C31—C27 120.9 (8)
N2—C11—C7 122.1 (6) O8—C31—C27 115.5 (8)
N2—C11—C12 119.3 (5) C1—N1—C12 118.7 (6)
C7—C11—C12 118.6 (6) C1—N1—Ag1 127.8 (5)
N1—C12—C4 120.6 (6) C12—N1—Ag1 113.4 (4)
N1—C12—C11 119.9 (6) C10—N2—C11 118.3 (6)
C4—C12—C11 119.5 (6) C10—N2—Ag1 125.8 (5)
N3—C13—C14 123.8 (8) C11—N2—Ag1 115.8 (4)
N3—C13—H13 118.1 C13—N3—C24 118.2 (6)
C14—C13—H13 118.1 C13—N3—Ag1 124.2 (5)
C15—C14—C13 118.2 (8) C24—N3—Ag1 116.8 (4)
C15—C14—H14 120.9 C22—N4—C23 118.5 (6)
C13—C14—H14 120.9 C22—N4—Ag1 125.9 (5)
C14—C15—C16 119.8 (7) C23—N4—Ag1 114.5 (4)
C14—C15—H15 120.1 O6—N5—O5 122.3 (8)
C16—C15—H15 120.1 O6—N5—C25 119.8 (8)
C24—C16—C15 118.0 (6) O5—N5—C25 117.8 (8)
C24—C16—C17 120.3 (6) O10—N6—O11 123.8 (7)
C15—C16—C17 121.7 (6) O10—N6—C29 118.7 (8)
O3—C17—C18 120.3 (7) O11—N6—C29 117.6 (8)
O3—C17—C16 120.4 (7) C26—O7—H7 109.5
C18—C17—C16 119.3 (6) C31—O9—Ag1 105.3 (5)
O4—C18—C17 120.2 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O7—H7···O8 0.82 1.71 2.457 (9) 151.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VN2025).

References

  1. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Che, G. B., Liu, C. B., Liu, B., Wang, Q. W. & Xu, Z. L. (2008). CrystEngComm, 10, 184–191.
  5. Dickeson, J. E. & Sumers, L. A. (1970). Aust. J. Chem 23, 1023–1027.
  6. Hiort, C., Lincoln, P. & Norden, B. (1993). J. Am. Chem. Soc 115, 3448–3454.
  7. Onuegbu, J., Butcher, R. J., Hosten, C., Udeochu, U. C. & Bakare, O. (2009). Acta Cryst. E65, m1119–m1120. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Song, W.-D., Guo, X.-X. & Zhang, C.-H. (2007). Acta Cryst. E63, m399–m401.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811053785/vn2025sup1.cif

e-68-00m76-sup1.cif (32.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811053785/vn2025Isup2.hkl

e-68-00m76-Isup2.hkl (240.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES