Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Dec 23;68(Pt 1):m90. doi: 10.1107/S1600536811054821

Tetra­hedral zinc in tetra­kis­(1-methyl-1H-imidazole-κN 3)zinc bis­(tetra­fluorido­borate)

Jan Reedijk a,b,*, Gerard A van Albada a, Bart Limburg a, Ilpo Mutikainen c, Urho Turpeinen c
PMCID: PMC3254349  PMID: 22259384

Abstract

In the title compound, [Zn(C4H6N2)4](BF4)2, the ZnII ion is in a slightly distorted tetra­hedral coordination geometry, with Zn—N distances in the range 1.980 (2)–1.991 (2) Å. The tetra­hedral angles are in the range 104.93 (9)–118.81 (9)°.

Related literature

For related structures, see: Chen et al. (1996). For the synthesis and properties of the title compound, see: Reedijk (1969). The crystal was mounted using the oil-drop method, see: Kottke & Stalke (1993).graphic file with name e-68-00m90-scheme1.jpg

Experimental

Crystal data

  • [Zn(C4H6N2)4](BF4)2

  • M r = 567.42

  • Orthorhombic, Inline graphic

  • a = 7.257 (1) Å

  • b = 16.023 (1) Å

  • c = 21.040 (2) Å

  • V = 2446.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 173 K

  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.737, T max = 0.812

  • 17949 measured reflections

  • 4184 independent reflections

  • 3782 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.068

  • S = 1.08

  • 4184 reflections

  • 320 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983), 1690 Friedel pairs

  • Flack parameter: 0.038 (11)

Data collection: COLLECT (Nonius, 2002); cell refinement: DIRAX (Duisenberg, 1992); data reduction: COLLECT/EVAL (Nonius, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811054821/bv2196sup1.cif

e-68-00m90-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811054821/bv2196Isup2.hkl

e-68-00m90-Isup2.hkl (205.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are indebted to several generations of BSc, MSc and PhD students who have tried to reproduce the compound and to grow crystals of diffraction quality.

supplementary crystallographic information

Comment

The ligand 1-methyl-1H-methylimidazole (Meim) is an often used solvent and ligand for transition metal ions (Reedijk, 1969). It is a sterically non-demanding heterocyclic ligand, and it readily forms octahedrally coordinated homoleptic compounds with all first-row transition metal ions; the only exception is Cu(II), where 4 ligands coordinate together with 2 anions or other ligands, in a tetragonal geometry; this deviating behaviour is ascribed to the Jahn-Teller effect that prevents d9 ions from having high symmetry. Remarkably, and in addition to the six-coordinate ZnII species, in the case of Zn also tetrahedrally coordinated homoleptic compounds were reported by one of us, for both perchlorate and tetrafluoridoborate (Reedijk, 1969). The tetrahedral geometry was deduced from the significantly different IR ring vibrations near 955 cm-1, compared to the octahedral cases (Reedijk, 1969). Proof for this structure was lacking and another structure, like a tetragonal case with 2 anions could not be excluded. Sometime ago a room temperature three-dimensional structure was reported for the perchlorate, albeit with a less high accuracy (Chen et al. 1996). We now report the related tetrafluoridoborate, which is not isomorphous with the perchlorate, in high accuracy. The molecular structure differs hardly from the perchlorate, and the Zn—N distances are slightly shorter, just as one would expect for the present low-temperature structure.

Experimental

0.005 mol of hydrated zinc tetrafluoroborate, [Zn(H2O)6](BF4)2 is reacted in a 100 ml conical flask with 3 ml of trimethyl orthoformate, mof = (CH3O)3CH and the reaction mixture is dissolved in about 25 ml of methanol. Add to this metal salt solution a solution (drop by drop !!) of 0.01 mol of Meim in 10 ml of methanol. Crystals appear upon standing, and can be enhanced by slow evaporating of some of the solvent or after addition of some diethyl ether. The crystals were characterized by elemental analysis and infrared spectra and shown to be identical to the 1969 sample.

A crystal was selected for the X–ray measurements and mounted to the glass fiber using the oil drop method (Kottke & Stalke, 1993) and data were collected at 193 K. The intensity data were corrected for Lorentz and polarization effects and for absorption.

Refinement

DIRAX Software was used for the unit cell refinement (Duisenberg 1992) SHELXL97 was used for the structure refinement (Sheldrick, 2008). All hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms, with aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å and methylene C—H = 0.97 Å. The displacement parameters were set for phenyl and methylene H atoms at Uiso(H) = 1.2Ueq(C) and methyl H atoms at Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

Showing the structure of tetrakis(N-methylimidazole)zinc(II) bis(tetrafluoridoborate) with atom labeling. Atomis displacement parameters at the 50% level. Hydrogen atoms omitted for clarity.

Crystal data

[Zn(C4H6N2)4](BF4)2 F(000) = 1152
Mr = 567.42 Dx = 1.541 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 17949 reflections
a = 7.257 (1) Å θ = 2–25°
b = 16.023 (1) Å µ = 1.09 mm1
c = 21.040 (2) Å T = 173 K
V = 2446.5 (4) Å3 Block, colourless
Z = 4 0.30 × 0.30 × 0.20 mm

Data collection

Nonius KappaCCD diffractometer 4184 independent reflections
Radiation source: fine-focus sealed tube 3782 reflections with I > 2σ(I)
graphite Rint = 0.024
φ–scan θmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.737, Tmax = 0.812 k = −19→19
17949 measured reflections l = −25→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0283P)2 + 0.9793P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.002
4184 reflections Δρmax = 0.29 e Å3
320 parameters Δρmin = −0.22 e Å3
0 restraints Absolute structure: Flack (1983), 1690 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.038 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.74735 (4) 0.106549 (16) 0.211095 (12) 0.02792 (9)
N11 1.0279 (3) 0.18745 (14) 0.36966 (11) 0.0349 (5)
C12 0.9127 (4) 0.13756 (17) 0.33848 (13) 0.0333 (6)
H12A 0.8408 0.0951 0.3579 0.040*
N13 0.9111 (3) 0.15463 (13) 0.27699 (10) 0.0293 (5)
C14 1.0326 (4) 0.21893 (16) 0.26899 (14) 0.0331 (6)
H14A 1.0620 0.2448 0.2297 0.040*
C15 1.1040 (4) 0.23962 (18) 0.32598 (15) 0.0380 (7)
H15A 1.1911 0.2826 0.3341 0.046*
C16 1.0587 (5) 0.1890 (2) 0.43885 (14) 0.0521 (9)
H16A 1.0325 0.1337 0.4566 0.078*
H16B 0.9769 0.2303 0.4584 0.078*
H16C 1.1872 0.2038 0.4476 0.078*
N21 0.5616 (4) 0.28245 (15) 0.08385 (11) 0.0407 (6)
C22 0.6664 (4) 0.22009 (18) 0.10313 (14) 0.0389 (7)
H22A 0.7591 0.1946 0.0778 0.047*
N23 0.6270 (3) 0.19746 (14) 0.16175 (10) 0.0312 (5)
C24 0.4888 (5) 0.2490 (2) 0.18037 (15) 0.0498 (8)
H24A 0.4300 0.2477 0.2207 0.060*
C25 0.4481 (5) 0.3018 (2) 0.13331 (17) 0.0565 (9)
H25A 0.3575 0.3445 0.1341 0.068*
C26 0.5728 (6) 0.3243 (2) 0.02215 (17) 0.0655 (11)
H26A 0.5991 0.2830 −0.0110 0.098*
H26B 0.6716 0.3660 0.0232 0.098*
H26C 0.4553 0.3519 0.0130 0.098*
N31 0.9945 (3) −0.02052 (14) 0.06370 (11) 0.0338 (5)
C32 0.8538 (4) −0.00141 (17) 0.10051 (13) 0.0337 (6)
H32A 0.7312 −0.0201 0.0934 0.040*
N33 0.9037 (3) 0.04690 (13) 0.14854 (10) 0.0307 (5)
C34 1.0903 (4) 0.05768 (18) 0.14078 (14) 0.0370 (7)
H34A 1.1679 0.0894 0.1680 0.044*
C35 1.1459 (4) 0.01614 (19) 0.08845 (14) 0.0404 (7)
H35A 1.2678 0.0132 0.0722 0.048*
C36 0.9860 (5) −0.0720 (2) 0.00624 (14) 0.0504 (9)
H36A 0.8635 −0.0974 0.0027 0.076*
H36B 1.0795 −0.1161 0.0087 0.076*
H36C 1.0094 −0.0371 −0.0311 0.076*
N41 0.3159 (3) −0.03724 (13) 0.27391 (11) 0.0325 (5)
C42 0.4558 (4) −0.02174 (16) 0.23532 (13) 0.0343 (6)
H42A 0.4859 −0.0540 0.1989 0.041*
N43 0.5474 (3) 0.04449 (13) 0.25430 (10) 0.0305 (5)
C44 0.4575 (4) 0.07224 (17) 0.30800 (13) 0.0365 (7)
H44A 0.4918 0.1196 0.3325 0.044*
C45 0.3142 (4) 0.02213 (17) 0.32034 (14) 0.0358 (7)
H45A 0.2290 0.0269 0.3544 0.043*
C46 0.1797 (5) −0.1034 (2) 0.26619 (17) 0.0515 (8)
H46A 0.2137 −0.1385 0.2299 0.077*
H46B 0.0582 −0.0786 0.2587 0.077*
H46C 0.1757 −0.1375 0.3048 0.077*
B1 0.5668 (5) 0.29807 (19) 0.39058 (15) 0.0315 (7)
F11 0.4370 (3) 0.35592 (14) 0.40508 (12) 0.0798 (7)
F12 0.7350 (3) 0.32732 (13) 0.40642 (11) 0.0793 (6)
F13 0.5591 (3) 0.28377 (13) 0.32566 (8) 0.0665 (6)
F14 0.5315 (4) 0.22546 (12) 0.42041 (9) 0.0711 (7)
B2 0.4462 (5) 0.5760 (2) 0.55754 (18) 0.0425 (8)
F21 0.3564 (6) 0.5904 (2) 0.50432 (16) 0.1491 (16)
F22 0.3308 (4) 0.54048 (14) 0.60095 (16) 0.1142 (12)
F23 0.5926 (4) 0.52453 (16) 0.54884 (12) 0.0815 (7)
F24 0.5047 (4) 0.65008 (14) 0.58165 (13) 0.0866 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.02814 (15) 0.02826 (14) 0.02736 (14) −0.00132 (17) 0.00093 (17) −0.00254 (11)
N11 0.0360 (13) 0.0347 (12) 0.0339 (12) 0.0090 (11) −0.0098 (11) −0.0097 (11)
C12 0.0330 (15) 0.0307 (13) 0.0362 (15) 0.0035 (13) −0.0003 (12) −0.0038 (12)
N13 0.0317 (12) 0.0280 (11) 0.0281 (13) 0.0022 (10) −0.0018 (9) −0.0032 (9)
C14 0.0300 (15) 0.0285 (13) 0.0407 (16) −0.0015 (12) −0.0010 (12) −0.0005 (12)
C15 0.0318 (15) 0.0311 (14) 0.0510 (18) 0.0002 (13) −0.0101 (14) −0.0039 (14)
C16 0.065 (2) 0.057 (2) 0.0345 (17) 0.0133 (19) −0.0171 (16) −0.0096 (15)
N21 0.0469 (15) 0.0389 (14) 0.0362 (14) −0.0066 (13) −0.0142 (12) 0.0034 (11)
C22 0.0433 (16) 0.0365 (15) 0.0369 (16) 0.0026 (14) 0.0046 (14) 0.0037 (13)
N23 0.0314 (13) 0.0344 (12) 0.0277 (12) 0.0015 (11) 0.0004 (10) 0.0000 (10)
C24 0.0482 (19) 0.066 (2) 0.0353 (16) 0.0203 (18) 0.0006 (15) −0.0016 (16)
C25 0.059 (2) 0.058 (2) 0.053 (2) 0.0250 (18) −0.0099 (18) −0.0019 (18)
C26 0.080 (3) 0.065 (2) 0.052 (2) −0.012 (2) −0.019 (2) 0.0273 (19)
N31 0.0410 (14) 0.0300 (11) 0.0305 (12) 0.0088 (11) −0.0007 (11) −0.0019 (10)
C32 0.0363 (15) 0.0315 (14) 0.0333 (15) 0.0013 (13) 0.0002 (12) −0.0043 (12)
N33 0.0332 (13) 0.0298 (11) 0.0292 (12) 0.0011 (10) 0.0003 (10) −0.0035 (10)
C34 0.0325 (16) 0.0382 (16) 0.0402 (16) −0.0008 (13) −0.0006 (13) −0.0061 (13)
C35 0.0348 (16) 0.0446 (17) 0.0418 (17) 0.0084 (15) 0.0033 (14) −0.0020 (14)
C36 0.068 (2) 0.0482 (18) 0.0348 (16) 0.0147 (17) −0.0050 (16) −0.0144 (14)
N41 0.0318 (13) 0.0259 (11) 0.0398 (14) −0.0037 (9) 0.0071 (9) 0.0009 (10)
C42 0.0392 (17) 0.0290 (14) 0.0347 (14) −0.0028 (13) 0.0059 (13) −0.0036 (12)
N43 0.0321 (13) 0.0270 (11) 0.0323 (12) −0.0026 (11) 0.0022 (10) −0.0018 (9)
C44 0.0406 (17) 0.0319 (14) 0.0371 (16) −0.0011 (13) 0.0063 (13) −0.0104 (12)
C45 0.0328 (16) 0.0367 (15) 0.0380 (15) 0.0040 (12) 0.0080 (12) −0.0025 (13)
C46 0.0502 (19) 0.0400 (17) 0.064 (2) −0.0149 (15) 0.0116 (16) −0.0043 (16)
B1 0.0349 (18) 0.0275 (15) 0.0321 (17) 0.0002 (15) −0.0037 (14) 0.0007 (13)
F11 0.0721 (15) 0.0666 (13) 0.1008 (18) 0.0343 (13) −0.0033 (13) −0.0135 (13)
F12 0.0497 (12) 0.0719 (12) 0.1162 (18) −0.0095 (13) −0.0260 (15) −0.0203 (12)
F13 0.0923 (16) 0.0784 (14) 0.0290 (10) −0.0241 (13) 0.0019 (10) 0.0042 (9)
F14 0.129 (2) 0.0406 (10) 0.0436 (11) −0.0129 (12) 0.0012 (12) 0.0122 (9)
B2 0.037 (2) 0.0398 (19) 0.050 (2) −0.0009 (17) −0.0064 (17) 0.0080 (16)
F21 0.208 (4) 0.119 (2) 0.120 (3) 0.002 (2) −0.118 (3) 0.021 (2)
F22 0.105 (2) 0.0549 (14) 0.182 (3) 0.0142 (14) 0.076 (2) 0.0322 (17)
F23 0.0736 (16) 0.0789 (15) 0.0921 (18) 0.0272 (14) 0.0142 (13) 0.0017 (13)
F24 0.0853 (17) 0.0659 (14) 0.109 (2) −0.0175 (14) 0.0057 (16) −0.0223 (14)

Geometric parameters (Å, °)

Zn1—N43 1.980 (2) N31—C36 1.465 (4)
Zn1—N13 1.982 (2) C32—N33 1.324 (3)
Zn1—N33 1.983 (2) C32—H32A 0.9500
Zn1—N23 1.991 (2) N33—C34 1.375 (4)
N11—C12 1.330 (4) C34—C35 1.348 (4)
N11—C15 1.359 (4) C34—H34A 0.9500
N11—C16 1.473 (4) C35—H35A 0.9500
C12—N13 1.322 (3) C36—H36A 0.9800
C12—H12A 0.9500 C36—H36B 0.9800
N13—C14 1.366 (3) C36—H36C 0.9800
C14—C15 1.347 (4) N41—C42 1.324 (4)
C14—H14A 0.9500 N41—C45 1.364 (4)
C15—H15A 0.9500 N41—C46 1.459 (4)
C16—H16A 0.9800 C42—N43 1.314 (3)
C16—H16B 0.9800 C42—H42A 0.9500
C16—H16C 0.9800 N43—C44 1.378 (3)
N21—C22 1.320 (4) C44—C45 1.339 (4)
N21—C25 1.362 (4) C44—H44A 0.9500
N21—C26 1.463 (4) C45—H45A 0.9500
C22—N23 1.317 (4) C46—H46A 0.9800
C22—H22A 0.9500 C46—H46B 0.9800
N23—C24 1.357 (4) C46—H46C 0.9800
C24—C25 1.335 (5) B1—F14 1.346 (4)
C24—H24A 0.9500 B1—F12 1.349 (4)
C25—H25A 0.9500 B1—F11 1.356 (4)
C26—H26A 0.9800 B1—F13 1.386 (4)
C26—H26B 0.9800 B2—F21 1.316 (4)
C26—H26C 0.9800 B2—F23 1.357 (4)
N31—C32 1.318 (4) B2—F24 1.359 (4)
N31—C35 1.350 (4) B2—F22 1.364 (4)
N43—Zn1—N13 108.27 (9) N31—C32—N33 111.9 (3)
N43—Zn1—N33 118.81 (9) N31—C32—H32A 124.1
N13—Zn1—N33 107.97 (9) N33—C32—H32A 124.1
N43—Zn1—N23 106.57 (9) C32—N33—C34 104.6 (2)
N13—Zn1—N23 110.09 (9) C32—N33—Zn1 129.2 (2)
N33—Zn1—N23 104.93 (9) C34—N33—Zn1 125.57 (19)
C12—N11—C15 106.9 (2) C35—C34—N33 109.2 (3)
C12—N11—C16 126.4 (3) C35—C34—H34A 125.4
C15—N11—C16 126.6 (3) N33—C34—H34A 125.4
N13—C12—N11 111.3 (3) C34—C35—N31 106.7 (3)
N13—C12—H12A 124.3 C34—C35—H35A 126.7
N11—C12—H12A 124.3 N31—C35—H35A 126.7
C12—N13—C14 105.7 (2) N31—C36—H36A 109.5
C12—N13—Zn1 127.5 (2) N31—C36—H36B 109.5
C14—N13—Zn1 126.43 (18) H36A—C36—H36B 109.5
C15—C14—N13 108.9 (2) N31—C36—H36C 109.5
C15—C14—H14A 125.6 H36A—C36—H36C 109.5
N13—C14—H14A 125.6 H36B—C36—H36C 109.5
C14—C15—N11 107.1 (2) C42—N41—C45 108.4 (2)
C14—C15—H15A 126.4 C42—N41—C46 126.0 (2)
N11—C15—H15A 126.4 C45—N41—C46 125.5 (2)
N11—C16—H16A 109.5 N43—C42—N41 110.7 (2)
N11—C16—H16B 109.5 N43—C42—H42A 124.7
H16A—C16—H16B 109.5 N41—C42—H42A 124.7
N11—C16—H16C 109.5 C42—N43—C44 105.7 (2)
H16A—C16—H16C 109.5 C42—N43—Zn1 129.52 (19)
H16B—C16—H16C 109.5 C44—N43—Zn1 124.14 (18)
C22—N21—C25 106.6 (3) C45—C44—N43 109.5 (2)
C22—N21—C26 126.0 (3) C45—C44—H44A 125.3
C25—N21—C26 127.4 (3) N43—C44—H44A 125.3
N23—C22—N21 111.8 (3) C44—C45—N41 105.8 (2)
N23—C22—H22A 124.1 C44—C45—H45A 127.1
N21—C22—H22A 124.1 N41—C45—H45A 127.1
C22—N23—C24 105.3 (2) N41—C46—H46A 109.5
C22—N23—Zn1 126.5 (2) N41—C46—H46B 109.5
C24—N23—Zn1 128.2 (2) H46A—C46—H46B 109.5
C25—C24—N23 109.6 (3) N41—C46—H46C 109.5
C25—C24—H24A 125.2 H46A—C46—H46C 109.5
N23—C24—H24A 125.2 H46B—C46—H46C 109.5
C24—C25—N21 106.8 (3) F14—B1—F12 110.9 (3)
C24—C25—H25A 126.6 F14—B1—F11 110.7 (3)
N21—C25—H25A 126.6 F12—B1—F11 109.6 (3)
N21—C26—H26A 109.5 F14—B1—F13 108.0 (2)
N21—C26—H26B 109.5 F12—B1—F13 109.7 (3)
H26A—C26—H26B 109.5 F11—B1—F13 107.9 (3)
N21—C26—H26C 109.5 F21—B2—F23 112.3 (4)
H26A—C26—H26C 109.5 F21—B2—F24 108.5 (3)
H26B—C26—H26C 109.5 F23—B2—F24 109.7 (3)
C32—N31—C35 107.6 (2) F21—B2—F22 109.8 (4)
C32—N31—C36 125.7 (3) F23—B2—F22 108.5 (3)
C35—N31—C36 126.7 (3) F24—B2—F22 107.8 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2196).

References

  1. Chen, X.-M., Huang, X.-C., Xu, Z.-T. & Huang, X.-Y. (1996). Acta Cryst. C52, 2482–2484.
  2. Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Kottke, T. & Stalke, D. (1993). J. Appl. Cryst. 26, 615–619.
  5. Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  6. Reedijk, J. (1969). Inorg. Chim. Acta, 3, 517–522.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811054821/bv2196sup1.cif

e-68-00m90-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811054821/bv2196Isup2.hkl

e-68-00m90-Isup2.hkl (205.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES