Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Dec 3;68(Pt 1):o11. doi: 10.1107/S1600536811051440

1′-Methyl-4′-(4-methyl­phen­yl)dispiro­[1-benzopyran-3(4H),3′-pyrrolidine-2′,3′′-indoline]-2,2′′-dione

D Lakshmanan a, S Murugavel b,*, D Kannan c, M Bakthadoss c,
PMCID: PMC3254352  PMID: 22259396

Abstract

In the title compound, C27H24N2O3, the pyrroldine ring adopts a twist conformation, while the six-membered pyran­one ring of the coumarin ring system is in a sofa conformation. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into inversion R 2 2(8) dimers. These dimers are further connected via C—H⋯O hydrogen bonds.

Related literature

For applications of pyrrolidine derivatives, see: Huryn et al. (1991); Suzuki et al. (1994); Waldmann (1995). For ring puckering parameters, see: Cremer & Pople (1975) and for asymmetry parameters, see: Duax et al. (1976). For closely related pyrrolidine structures, see: Selvanayagam et al. (2011); Ali et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-00o11-scheme1.jpg

Experimental

Crystal data

  • C27H24N2O3

  • M r = 424.48

  • Monoclinic, Inline graphic

  • a = 10.4543 (3) Å

  • b = 14.6018 (4) Å

  • c = 14.7266 (4) Å

  • β = 104.043 (2)°

  • V = 2180.85 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.26 × 0.23 × 0.18 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.978, T max = 0.985

  • 30221 measured reflections

  • 7055 independent reflections

  • 4544 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.153

  • S = 1.02

  • 7055 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811051440/bt5735sup1.cif

e-68-00o11-sup1.cif (24.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051440/bt5735Isup2.hkl

e-68-00o11-Isup2.hkl (338.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.86 2.02 2.874 (1) 174
C5—H5B⋯O3ii 0.96 2.59 3.407 (2) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

supplementary crystallographic information

Comment

Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). Optically active pyrrolidines have been used as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Suzuki et al., 1994; Huryn et al., 1991). In view of this importance, the crystal structure of the title compound has been carried out and the results are presented here.

The title compound consists of a pyrrolidine ring connected to a oxindole ring system at C1, a coumarine moiety at C2 and a benzene ring at C3. The X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig.1.

The pyrrolidine (N1/C1–C4) ring adopts a twist conformation , with twist about the C4—N1 bond; the puckering parameters (Cremer & Pople, 1975), q2 = 0.4216 (14) Å and φ2 = 156.9 (2)°, and asymmetry parameters (Duax et al., 1976) ΔC2[C4—N1] = 5.0 Å. The six membered pyranone ring (O2/C2/C13/C14/C19/C20) of the coumarine moiety adopts screw-boat conformation as indicated from the puckering parameters: Q = 0.5296 (15) Å, θ = 65.9 (2)° and φ = 215.9 (2)°. The oxindole unit (N2/C1/C6–C12) is essentially planar [maximum deviation = 0.048 (1) Å for the C1 atom] and is oriented at a dihedral angles of 87.1 (1)° and 28.6 (1)°, respectively, with the pyrrolidine and coumarine rings. The sum of angles at N1 of the pyrrolidine ring (337°) is in accordance with sp3 hybridization, and the sum of angles at N2 of the indole moiety (360°) is in accordance with sp2 hybridization. The geometric parameters of the title molecule agrees well with those reported for similar structures (Selvanayagam et al., 2011; Ali et al., 2010).

Ihe molecular structure is stabilized by C3—H3···O3 and C13—H13A···O1 intramolecular hydrogen bonds, forming S(5) and S(6) ring motifs, respectively (Bernstein et al., 1995) (Table 1). The molecular structure is further stabilized by an intramolecular π—π interactions with Cg1—Cg2 seperation of 3.539 (1) Å. (Fig. 2; Cg1 and Cg2 are the centroids of the (N2/C1/C6/C7/C12) indole ring, (C14–C19) benzene ring, respectively). The crystal packing is stabilized by intermolecular N—H···O and C—H···O hydrogen bonds. The molecules at x, y, z and 2-x, 2-y, -z are linked by N2—H2···O1 hydrogen bonds into cyclic centrosymmetric R22(8) dimers. This dimers are further connected by C5—H5B···O3 hydrogen bonds forming supramolecular zig zag chains along the c axis (Fig. 3).

Experimental

A mixture of E-3-(4-methylbenzylidene)chroman-2-one (0.125 g, 0.5 mmol), isatin (0.08 g, 0.55 mmol) and N- methylglycine (0.025 g, 0.55 mmol) in toluene (5 ml) as solvent was allowed to reflux for 6 hours. After work up, the crude mass was purified by column chromatography to yield the pure product (0.195 g, 92% yield). The compound was recrystallized from ethyl acetate solvent. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a ethylacetate solution at room temperature.

Refinement

H atoms were positioned geometrically, with N—H = 0.86 Å and and C—H = 0.93–0.98 Å and constrained to ride on their parent atom, with Uiso(H)=1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small cycles of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the π···π interactions (dotted lines) in the molecular structure of the title compound. Cg1 and Cg2 are the centroids of the (N2/C1/C6/C7/C12) indole ring and (C14–C19) benzene ring, respectively.

Fig. 3.

Fig. 3.

View of supramolecular zig zag chain in (I) with N—H···O (blue dashed lines) and C—H···O (red dashed lines) hydrogen bonds along the c axis.[ Colour code: O(red), N(blue), C(black) & H(green).

Crystal data

C27H24N2O3 F(000) = 896
Mr = 424.48 Dx = 1.293 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7063 reflections
a = 10.4543 (3) Å θ = 2.0–31.2°
b = 14.6018 (4) Å µ = 0.09 mm1
c = 14.7266 (4) Å T = 293 K
β = 104.043 (2)° Block, colourless
V = 2180.85 (10) Å3 0.26 × 0.23 × 0.18 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 7055 independent reflections
Radiation source: fine-focus sealed tube 4544 reflections with I > 2σ(I)
graphite Rint = 0.031
Detector resolution: 10.0 pixels mm-1 θmax = 31.2°, θmin = 2.0°
ω scans h = −15→14
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −21→21
Tmin = 0.978, Tmax = 0.985 l = −20→21
30221 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.398P] where P = (Fo2 + 2Fc2)/3
7055 reflections (Δ/σ)max < 0.001
291 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.80511 (12) 0.84780 (8) 0.09959 (8) 0.0326 (2)
C2 0.80733 (12) 0.86879 (8) 0.20643 (8) 0.0335 (2)
C3 0.65980 (12) 0.89026 (9) 0.20385 (9) 0.0367 (3)
H3 0.6207 0.8333 0.2197 0.044*
C4 0.59877 (13) 0.90885 (11) 0.10112 (10) 0.0449 (3)
H4A 0.5042 0.8989 0.0858 0.054*
H4B 0.6166 0.9709 0.0841 0.054*
C5 0.63008 (17) 0.84632 (12) −0.04637 (10) 0.0548 (4)
H5A 0.5385 0.8313 −0.0695 0.082*
H5B 0.6830 0.8033 −0.0705 0.082*
H5C 0.6459 0.9070 −0.0662 0.082*
C6 0.87724 (13) 0.92422 (9) 0.05686 (9) 0.0383 (3)
C7 0.97873 (13) 0.79028 (9) 0.03856 (9) 0.0382 (3)
C8 1.06331 (16) 0.72827 (11) 0.01407 (11) 0.0528 (4)
H8 1.1311 0.7470 −0.0125 0.063*
C9 1.04343 (19) 0.63686 (12) 0.03057 (13) 0.0626 (5)
H9 1.1002 0.5932 0.0161 0.075*
C10 0.94146 (19) 0.60908 (10) 0.06787 (12) 0.0586 (4)
H10 0.9291 0.5469 0.0767 0.070*
C11 0.85666 (16) 0.67219 (9) 0.09259 (10) 0.0455 (3)
H11 0.7871 0.6532 0.1172 0.055*
C12 0.87840 (13) 0.76409 (8) 0.07963 (8) 0.0348 (3)
C13 0.90158 (13) 0.94596 (10) 0.25105 (10) 0.0450 (3)
H13A 0.8788 1.0018 0.2152 0.054*
H13B 0.8931 0.9573 0.3142 0.054*
C14 1.04058 (14) 0.91967 (12) 0.25330 (11) 0.0520 (4)
C15 1.13597 (18) 0.97997 (16) 0.23772 (14) 0.0717 (6)
H15 1.1152 1.0414 0.2254 0.086*
C16 1.2617 (2) 0.9486 (2) 0.24059 (18) 0.0957 (8)
H16 1.3259 0.9893 0.2313 0.115*
C17 1.2920 (2) 0.8584 (2) 0.2570 (2) 0.1000 (9)
H17 1.3766 0.8380 0.2578 0.120*
C18 1.19962 (18) 0.79673 (18) 0.27257 (14) 0.0791 (6)
H18 1.2205 0.7352 0.2840 0.095*
C19 1.07479 (14) 0.82966 (13) 0.27055 (10) 0.0544 (4)
C20 0.85238 (14) 0.78283 (10) 0.26401 (9) 0.0418 (3)
C21 0.63774 (12) 0.96203 (9) 0.27238 (10) 0.0395 (3)
C22 0.64635 (16) 0.93919 (11) 0.36474 (11) 0.0509 (4)
H22 0.6657 0.8791 0.3843 0.061*
C23 0.62671 (17) 1.00382 (13) 0.42869 (12) 0.0584 (4)
H23 0.6352 0.9864 0.4906 0.070*
C24 0.59504 (15) 1.09288 (12) 0.40314 (13) 0.0560 (4)
C25 0.5856 (2) 1.11562 (12) 0.31114 (15) 0.0677 (5)
H25 0.5637 1.1754 0.2915 0.081*
C26 0.60777 (18) 1.05209 (11) 0.24708 (12) 0.0576 (4)
H26 0.6024 1.0703 0.1858 0.069*
C27 0.5729 (2) 1.16348 (15) 0.47218 (17) 0.0806 (6)
H27A 0.6150 1.2198 0.4624 0.121*
H27B 0.6095 1.1420 0.5347 0.121*
H27C 0.4800 1.1737 0.4635 0.121*
N1 0.66462 (11) 0.84226 (8) 0.05524 (8) 0.0395 (2)
N2 0.97478 (11) 0.88502 (8) 0.02528 (8) 0.0430 (3)
H2 1.0282 0.9148 0.0000 0.052*
O1 0.84748 (11) 1.00547 (6) 0.05046 (8) 0.0525 (3)
O2 0.98473 (10) 0.76670 (8) 0.29036 (7) 0.0546 (3)
O3 0.78215 (12) 0.72821 (8) 0.28723 (8) 0.0607 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0345 (6) 0.0302 (6) 0.0358 (6) −0.0025 (4) 0.0135 (5) 0.0040 (4)
C2 0.0307 (6) 0.0370 (6) 0.0351 (6) −0.0028 (5) 0.0122 (5) 0.0013 (5)
C3 0.0304 (6) 0.0405 (6) 0.0426 (7) −0.0013 (5) 0.0154 (5) 0.0039 (5)
C4 0.0343 (6) 0.0549 (8) 0.0459 (7) 0.0033 (6) 0.0108 (6) 0.0029 (6)
C5 0.0553 (9) 0.0659 (10) 0.0397 (7) 0.0022 (7) 0.0051 (6) 0.0038 (7)
C6 0.0412 (7) 0.0345 (6) 0.0434 (7) −0.0018 (5) 0.0184 (5) 0.0055 (5)
C7 0.0409 (7) 0.0403 (7) 0.0343 (6) 0.0031 (5) 0.0110 (5) −0.0006 (5)
C8 0.0489 (8) 0.0610 (10) 0.0504 (8) 0.0121 (7) 0.0157 (7) −0.0087 (7)
C9 0.0666 (11) 0.0519 (9) 0.0654 (10) 0.0217 (8) 0.0080 (9) −0.0158 (8)
C10 0.0752 (11) 0.0342 (7) 0.0583 (9) 0.0090 (7) 0.0007 (8) −0.0044 (6)
C11 0.0564 (8) 0.0341 (6) 0.0432 (7) −0.0043 (6) 0.0066 (6) 0.0020 (5)
C12 0.0406 (6) 0.0319 (6) 0.0315 (6) 0.0005 (5) 0.0079 (5) 0.0013 (4)
C13 0.0368 (7) 0.0510 (8) 0.0505 (8) −0.0090 (6) 0.0172 (6) −0.0151 (6)
C14 0.0345 (7) 0.0732 (10) 0.0499 (8) −0.0107 (7) 0.0131 (6) −0.0233 (7)
C15 0.0484 (9) 0.0934 (14) 0.0787 (12) −0.0280 (9) 0.0260 (9) −0.0347 (10)
C16 0.0436 (10) 0.144 (2) 0.1069 (18) −0.0334 (13) 0.0318 (11) −0.0466 (17)
C17 0.0351 (9) 0.155 (3) 0.1101 (19) −0.0022 (13) 0.0174 (10) −0.0376 (18)
C18 0.0427 (9) 0.1165 (17) 0.0735 (12) 0.0177 (10) 0.0055 (8) −0.0151 (12)
C19 0.0348 (7) 0.0841 (12) 0.0422 (8) 0.0019 (7) 0.0050 (6) −0.0116 (7)
C20 0.0441 (7) 0.0485 (8) 0.0344 (6) 0.0056 (6) 0.0126 (5) 0.0054 (5)
C21 0.0312 (6) 0.0437 (7) 0.0471 (7) 0.0024 (5) 0.0159 (5) 0.0019 (5)
C22 0.0566 (9) 0.0508 (8) 0.0516 (8) 0.0114 (7) 0.0253 (7) 0.0060 (6)
C23 0.0592 (10) 0.0708 (11) 0.0512 (9) 0.0109 (8) 0.0248 (8) −0.0019 (8)
C24 0.0411 (8) 0.0614 (10) 0.0685 (10) 0.0054 (7) 0.0190 (7) −0.0145 (8)
C25 0.0757 (12) 0.0464 (9) 0.0819 (13) 0.0145 (8) 0.0208 (10) −0.0001 (8)
C26 0.0701 (11) 0.0485 (9) 0.0561 (9) 0.0107 (7) 0.0189 (8) 0.0069 (7)
C27 0.0697 (12) 0.0794 (14) 0.0981 (16) 0.0079 (10) 0.0307 (11) −0.0328 (11)
N1 0.0348 (5) 0.0465 (6) 0.0364 (5) −0.0024 (4) 0.0073 (4) 0.0027 (4)
N2 0.0459 (6) 0.0404 (6) 0.0509 (7) −0.0014 (5) 0.0274 (5) 0.0064 (5)
O1 0.0583 (6) 0.0341 (5) 0.0744 (7) 0.0032 (4) 0.0344 (5) 0.0138 (5)
O2 0.0464 (6) 0.0712 (7) 0.0436 (5) 0.0159 (5) 0.0056 (4) 0.0086 (5)
O3 0.0682 (7) 0.0571 (7) 0.0645 (7) 0.0054 (5) 0.0314 (6) 0.0256 (5)

Geometric parameters (Å, °)

C1—N1 1.4577 (16) C13—H13A 0.9700
C1—C12 1.5089 (17) C13—H13B 0.9700
C1—C6 1.5621 (16) C14—C19 1.370 (3)
C1—C2 1.5975 (17) C14—C15 1.391 (2)
C2—C20 1.5240 (18) C15—C16 1.383 (3)
C2—C13 1.5356 (18) C15—H15 0.9300
C2—C3 1.5652 (17) C16—C17 1.363 (4)
C3—C21 1.5110 (18) C16—H16 0.9300
C3—C4 1.5169 (19) C17—C18 1.380 (4)
C3—H3 0.9800 C17—H17 0.9300
C4—N1 1.4497 (18) C18—C19 1.384 (2)
C4—H4A 0.9700 C18—H18 0.9300
C4—H4B 0.9700 C19—O2 1.396 (2)
C5—N1 1.4529 (18) C20—O3 1.1892 (17)
C5—H5A 0.9600 C20—O2 1.3637 (17)
C5—H5B 0.9600 C21—C26 1.382 (2)
C5—H5C 0.9600 C21—C22 1.382 (2)
C6—O1 1.2243 (16) C22—C23 1.383 (2)
C6—N2 1.3467 (17) C22—H22 0.9300
C7—C8 1.3736 (19) C23—C24 1.372 (2)
C7—C12 1.3857 (18) C23—H23 0.9300
C7—N2 1.3964 (18) C24—C25 1.375 (3)
C8—C9 1.381 (2) C24—C27 1.505 (2)
C8—H8 0.9300 C25—C26 1.382 (2)
C9—C10 1.374 (3) C25—H25 0.9300
C9—H9 0.9300 C26—H26 0.9300
C10—C11 1.387 (2) C27—H27A 0.9600
C10—H10 0.9300 C27—H27B 0.9600
C11—C12 1.3820 (18) C27—H27C 0.9600
C11—H11 0.9300 N2—H2 0.8600
C13—C14 1.496 (2)
N1—C1—C12 111.83 (10) C2—C13—H13B 109.7
N1—C1—C6 113.05 (10) H13A—C13—H13B 108.2
C12—C1—C6 100.52 (9) C19—C14—C15 118.22 (16)
N1—C1—C2 102.96 (9) C19—C14—C13 117.33 (14)
C12—C1—C2 117.43 (10) C15—C14—C13 124.44 (17)
C6—C1—C2 111.50 (10) C16—C15—C14 120.0 (2)
C20—C2—C13 106.66 (11) C16—C15—H15 120.0
C20—C2—C3 110.37 (10) C14—C15—H15 120.0
C13—C2—C3 112.93 (10) C17—C16—C15 120.2 (2)
C20—C2—C1 108.58 (10) C17—C16—H16 119.9
C13—C2—C1 114.63 (10) C15—C16—H16 119.9
C3—C2—C1 103.64 (9) C16—C17—C18 121.2 (2)
C21—C3—C4 116.52 (11) C16—C17—H17 119.4
C21—C3—C2 115.59 (10) C18—C17—H17 119.4
C4—C3—C2 103.51 (10) C17—C18—C19 117.7 (2)
C21—C3—H3 106.9 C17—C18—H18 121.2
C4—C3—H3 106.9 C19—C18—H18 121.2
C2—C3—H3 106.9 C14—C19—C18 122.66 (18)
N1—C4—C3 102.26 (11) C14—C19—O2 120.77 (13)
N1—C4—H4A 111.3 C18—C19—O2 116.53 (18)
C3—C4—H4A 111.3 O3—C20—O2 117.19 (13)
N1—C4—H4B 111.3 O3—C20—C2 125.69 (13)
C3—C4—H4B 111.3 O2—C20—C2 117.12 (12)
H4A—C4—H4B 109.2 C26—C21—C22 116.83 (14)
N1—C5—H5A 109.5 C26—C21—C3 122.78 (13)
N1—C5—H5B 109.5 C22—C21—C3 120.39 (12)
H5A—C5—H5B 109.5 C21—C22—C23 121.36 (15)
N1—C5—H5C 109.5 C21—C22—H22 119.3
H5A—C5—H5C 109.5 C23—C22—H22 119.3
H5B—C5—H5C 109.5 C24—C23—C22 121.72 (16)
O1—C6—N2 125.79 (12) C24—C23—H23 119.1
O1—C6—C1 125.78 (11) C22—C23—H23 119.1
N2—C6—C1 108.39 (11) C23—C24—C25 117.01 (15)
C8—C7—C12 122.44 (13) C23—C24—C27 122.04 (18)
C8—C7—N2 127.98 (13) C25—C24—C27 120.95 (18)
C12—C7—N2 109.56 (11) C24—C25—C26 121.77 (16)
C7—C8—C9 117.18 (16) C24—C25—H25 119.1
C7—C8—H8 121.4 C26—C25—H25 119.1
C9—C8—H8 121.4 C21—C26—C25 121.29 (16)
C10—C9—C8 121.34 (15) C21—C26—H26 119.4
C10—C9—H9 119.3 C25—C26—H26 119.4
C8—C9—H9 119.3 C24—C27—H27A 109.5
C9—C10—C11 121.08 (15) C24—C27—H27B 109.5
C9—C10—H10 119.5 H27A—C27—H27B 109.5
C11—C10—H10 119.5 C24—C27—H27C 109.5
C12—C11—C10 118.15 (15) H27A—C27—H27C 109.5
C12—C11—H11 120.9 H27B—C27—H27C 109.5
C10—C11—H11 120.9 C4—N1—C5 115.16 (11)
C11—C12—C7 119.70 (12) C4—N1—C1 107.14 (10)
C11—C12—C1 130.64 (12) C5—N1—C1 115.52 (11)
C7—C12—C1 109.60 (10) C6—N2—C7 111.83 (11)
C14—C13—C2 109.89 (12) C6—N2—H2 124.1
C14—C13—H13A 109.7 C7—N2—H2 124.1
C2—C13—H13A 109.7 C20—O2—C19 121.05 (12)
C14—C13—H13B 109.7
N1—C1—C2—C20 107.25 (11) C13—C14—C15—C16 −179.46 (17)
C12—C1—C2—C20 −16.07 (14) C14—C15—C16—C17 1.2 (3)
C6—C1—C2—C20 −131.25 (11) C15—C16—C17—C18 −1.0 (4)
N1—C1—C2—C13 −133.62 (11) C16—C17—C18—C19 0.2 (4)
C12—C1—C2—C13 103.06 (13) C15—C14—C19—C18 −0.3 (2)
C6—C1—C2—C13 −12.12 (15) C13—C14—C19—C18 178.73 (15)
N1—C1—C2—C3 −10.10 (11) C15—C14—C19—O2 177.45 (14)
C12—C1—C2—C3 −133.42 (11) C13—C14—C19—O2 −3.5 (2)
C6—C1—C2—C3 111.40 (11) C17—C18—C19—C14 0.5 (3)
C20—C2—C3—C21 98.57 (13) C17—C18—C19—O2 −177.40 (18)
C13—C2—C3—C21 −20.72 (15) C13—C2—C20—O3 138.05 (15)
C1—C2—C3—C21 −145.34 (11) C3—C2—C20—O3 15.04 (19)
C20—C2—C3—C4 −132.81 (11) C1—C2—C20—O3 −97.92 (16)
C13—C2—C3—C4 107.91 (13) C13—C2—C20—O2 −42.67 (15)
C1—C2—C3—C4 −16.72 (12) C3—C2—C20—O2 −165.68 (11)
C21—C3—C4—N1 166.01 (10) C1—C2—C20—O2 81.35 (14)
C2—C3—C4—N1 37.96 (13) C4—C3—C21—C26 −22.73 (19)
N1—C1—C6—O1 55.83 (18) C2—C3—C21—C26 99.17 (16)
C12—C1—C6—O1 175.18 (14) C4—C3—C21—C22 156.91 (13)
C2—C1—C6—O1 −59.61 (18) C2—C3—C21—C22 −81.19 (16)
N1—C1—C6—N2 −122.03 (12) C26—C21—C22—C23 −0.4 (2)
C12—C1—C6—N2 −2.69 (13) C3—C21—C22—C23 179.90 (14)
C2—C1—C6—N2 122.52 (12) C21—C22—C23—C24 1.4 (3)
C12—C7—C8—C9 1.1 (2) C22—C23—C24—C25 −1.0 (3)
N2—C7—C8—C9 −176.91 (14) C22—C23—C24—C27 179.71 (17)
C7—C8—C9—C10 1.5 (2) C23—C24—C25—C26 −0.4 (3)
C8—C9—C10—C11 −1.7 (3) C27—C24—C25—C26 178.90 (18)
C9—C10—C11—C12 −0.7 (2) C22—C21—C26—C25 −1.0 (2)
C10—C11—C12—C7 3.2 (2) C3—C21—C26—C25 178.70 (15)
C10—C11—C12—C1 −179.77 (13) C24—C25—C26—C21 1.4 (3)
C8—C7—C12—C11 −3.5 (2) C3—C4—N1—C5 −177.27 (12)
N2—C7—C12—C11 174.86 (12) C3—C4—N1—C1 −47.26 (13)
C8—C7—C12—C1 178.92 (13) C12—C1—N1—C4 162.40 (10)
N2—C7—C12—C1 −2.76 (14) C6—C1—N1—C4 −85.00 (12)
N1—C1—C12—C11 −53.82 (18) C2—C1—N1—C4 35.44 (12)
C6—C1—C12—C11 −174.04 (13) C12—C1—N1—C5 −67.79 (14)
C2—C1—C12—C11 64.87 (18) C6—C1—N1—C5 44.80 (15)
N1—C1—C12—C7 123.46 (11) C2—C1—N1—C5 165.25 (11)
C6—C1—C12—C7 3.23 (13) O1—C6—N2—C7 −176.60 (14)
C2—C1—C12—C7 −117.86 (11) C1—C6—N2—C7 1.27 (15)
C20—C2—C13—C14 57.15 (15) C8—C7—N2—C6 179.11 (14)
C3—C2—C13—C14 178.55 (11) C12—C7—N2—C6 0.90 (16)
C1—C2—C13—C14 −63.05 (16) O3—C20—O2—C19 −176.49 (13)
C2—C13—C14—C19 −36.75 (18) C2—C20—O2—C19 4.17 (18)
C2—C13—C14—C15 142.23 (15) C14—C19—O2—C20 21.8 (2)
C19—C14—C15—C16 −0.5 (3) C18—C19—O2—C20 −160.33 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O1i 0.86 2.02 2.874 (1) 174.
C5—H5B···O3ii 0.96 2.59 3.407 (2) 143.

Symmetry codes: (i) −x+2, −y+2, −z; (ii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5735).

References

  1. Ali, M. A., Ismail, R., Tan, S. C., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o2533–o2534. [DOI] [PMC free article] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
  3. Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. L. Allinger, pp. 271–383. New York: John Wiley.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Huryn, D. M., Trost, B. M. & Fleming, I. (1991). Comp. Org. Synth. 1, 64–74.
  8. Selvanayagam, S., Ravikumar, K., Saravanan, P. & Raghunathan, R. (2011). Acta Cryst. E67, o751. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett 35, 6119–6122.
  13. Waldmann, H. (1995). Synlett pp. 133–141.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811051440/bt5735sup1.cif

e-68-00o11-sup1.cif (24.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051440/bt5735Isup2.hkl

e-68-00o11-Isup2.hkl (338.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES