Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Dec 3;68(Pt 1):o14. doi: 10.1107/S1600536811051294

6-Chloro-1-methyl­indoline-2,3-dione

Hua Quan Liu a, Wei Tang a, De Cai Wang a,*, Ping Kai Ou-yang a
PMCID: PMC3254355  PMID: 22259426

Abstract

The title mol­ecule, C9H6ClNO2, is essentially planar: the maximum deviation from the mean plane of the indoline ring is 0.020 (2) Å and the substituents do not deviate by more than 0.053 (2) Å from this plane. C—H⋯O hydrogen bonds help to consolidate the crystal structure.

Related literature

The title compound is a halogenated derivative of isatin. For the cytotoxic and anti­neoplastic activity of halogenated isatin deriv­atives, see: Vine et al. (2007); Matesic et al. (2008). For the preparation of the title compound, see: Bouhfid et al. (2005). For a related structure, see: Wu et al. (2011).graphic file with name e-68-00o14-scheme1.jpg

Experimental

Crystal data

  • C9H6ClNO2

  • M r = 195.60

  • Monoclinic, Inline graphic

  • a = 13.077 (3) Å

  • b = 7.9390 (16) Å

  • c = 16.673 (3) Å

  • β = 101.95 (3)°

  • V = 1693.5 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.887, T max = 0.960

  • 3124 measured reflections

  • 1557 independent reflections

  • 1250 reflections with I > 2σ(I)

  • R int = 0.031

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.118

  • S = 1.00

  • 1557 reflections

  • 119 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811051294/pv2487sup1.cif

e-68-00o14-sup1.cif (15.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051294/pv2487Isup2.hkl

e-68-00o14-Isup2.hkl (76.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811051294/pv2487Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1i 0.93 2.50 3.419 (2) 168

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Halogenated derivatives of isatin have been reported to exhibit cytotoxic and antineoplastic activities (Vine et al., 2007; Matesic et al., 2008). As a part of our studies on the synthesis of isatin derivatives, the title compound was synthesized (Bouhfid et al. (2005)). We report herein the crystal structure of the title compound.

The title molecule (Fig. 1) is essentially planar with the maximum deviation of C4 atom from the mean-plane of indoline ring (N,C1–C8) is 0.020 (2) Å and the substituents do not deviate more than 0.053 (2) Å from this plane. In the crystal structure, intermolecular and intramolecular C—H···O hydrogen bonds helps to consolidate the crystal packing (Fig. 2 & Tab. 1).

Experimental

6-Chloroisatin (1.81 g, 0.01 mol) was reacted with iodomethane (0.02 mol) in the presence of K2CO3 (2.76 g, 0.02 mol) and tetrabutylammonium bromide (0.32 g, 0.001 mol) in DMF (60 ml). After 12 h stirring at room temperature, the precipitate was removed by filtration and purified by recrystallization from ethanol (m.p. 450–451 K; yield 67%). Yellow crystals of the title compound were obtained by slow evaporation from ethanol at room temperature.

Refinement

All H atoms were placed geometrically at the distances C—H = 0.93 and 0.96 Å for aryl and methyl type H-atoms and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.

Fig. 2.

Fig. 2.

A packing diagram of the title compound. The intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C9H6ClNO2 F(000) = 800
Mr = 195.60 Dx = 1.534 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 25 reflections
a = 13.077 (3) Å θ = 9–13°
b = 7.9390 (16) Å µ = 0.41 mm1
c = 16.673 (3) Å T = 293 K
β = 101.95 (3)° Block, yellow
V = 1693.5 (6) Å3 0.30 × 0.20 × 0.10 mm
Z = 8

Data collection

Enraf–Nonius CAD-4 diffractometer 1250 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.031
graphite θmax = 25.4°, θmin = 2.5°
ω/2θ scans h = 0→15
Absorption correction: ψ scan (North et al., 1968) k = −9→9
Tmin = 0.887, Tmax = 0.960 l = −20→20
3124 measured reflections 3 standard reflections every 200 reflections
1557 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.080P)2] where P = (Fo2 + 2Fc2)/3
1557 reflections (Δ/σ)max < 0.001
119 parameters Δρmax = 0.17 e Å3
1 restraint Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl 0.44670 (4) 0.16058 (8) 0.34958 (3) 0.0700 (3)
N 0.64277 (11) 0.39456 (19) 0.62790 (9) 0.0490 (4)
C1 0.62506 (13) 0.3717 (2) 0.54308 (11) 0.0427 (4)
O1 0.84333 (11) 0.63253 (19) 0.57603 (13) 0.0790 (5)
C2 0.54622 (13) 0.2784 (2) 0.49497 (11) 0.0441 (4)
H2A 0.4961 0.2225 0.5172 0.053*
O2 0.76431 (12) 0.5344 (2) 0.72436 (10) 0.0801 (5)
C3 0.54593 (14) 0.2728 (2) 0.41247 (12) 0.0492 (5)
C4 0.62028 (16) 0.3525 (2) 0.37645 (13) 0.0552 (5)
H4A 0.6180 0.3424 0.3205 0.066*
C5 0.69747 (15) 0.4469 (2) 0.42582 (13) 0.0554 (5)
H5A 0.7472 0.5033 0.4033 0.067*
C6 0.69983 (13) 0.4564 (2) 0.50844 (12) 0.0484 (5)
C7 0.76899 (14) 0.5415 (2) 0.57711 (15) 0.0579 (5)
C8 0.72891 (14) 0.4939 (2) 0.65333 (14) 0.0579 (5)
C9 0.58013 (17) 0.3220 (3) 0.68150 (14) 0.0608 (5)
H9A 0.6096 0.3521 0.7373 0.091*
H9B 0.5794 0.2016 0.6761 0.091*
H9C 0.5100 0.3643 0.6666 0.091*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl 0.0696 (4) 0.0753 (4) 0.0577 (4) −0.0114 (3) −0.0042 (3) −0.0050 (2)
N 0.0434 (9) 0.0508 (9) 0.0522 (9) −0.0023 (7) 0.0088 (7) −0.0046 (7)
C1 0.0372 (9) 0.0385 (8) 0.0526 (10) 0.0041 (7) 0.0095 (7) 0.0015 (7)
O1 0.0522 (9) 0.0643 (9) 0.1197 (15) −0.0190 (8) 0.0158 (9) −0.0066 (9)
C2 0.0394 (9) 0.0423 (9) 0.0509 (10) −0.0021 (7) 0.0100 (7) 0.0035 (7)
O2 0.0701 (10) 0.0856 (11) 0.0755 (12) −0.0061 (8) −0.0060 (8) −0.0214 (9)
C3 0.0455 (10) 0.0446 (10) 0.0544 (11) 0.0033 (8) 0.0031 (8) 0.0022 (8)
C4 0.0631 (12) 0.0558 (12) 0.0481 (11) 0.0060 (9) 0.0143 (9) 0.0089 (8)
C5 0.0535 (11) 0.0511 (11) 0.0673 (13) 0.0018 (9) 0.0253 (9) 0.0131 (9)
C6 0.0384 (9) 0.0385 (9) 0.0690 (13) 0.0007 (7) 0.0126 (8) 0.0029 (8)
C7 0.0377 (10) 0.0444 (10) 0.0900 (16) −0.0023 (8) 0.0098 (9) −0.0042 (9)
C8 0.0433 (10) 0.0534 (11) 0.0715 (14) 0.0020 (8) −0.0009 (9) −0.0132 (9)
C9 0.0596 (12) 0.0710 (14) 0.0530 (12) 0.0004 (10) 0.0141 (9) 0.0037 (10)

Geometric parameters (Å, °)

Cl—C3 1.7361 (19) C3—C4 1.396 (3)
N—C8 1.369 (2) C4—C5 1.383 (3)
N—C1 1.397 (2) C4—H4A 0.9300
N—C9 1.451 (3) C5—C6 1.373 (3)
C1—C2 1.383 (2) C5—H5A 0.9300
C1—C6 1.406 (2) C6—C7 1.468 (3)
O1—C7 1.215 (2) C7—C8 1.519 (3)
C2—C3 1.376 (3) C9—H9A 0.9600
C2—H2A 0.9300 C9—H9B 0.9600
O2—C8 1.222 (3) C9—H9C 0.9600
C8—N—C1 109.98 (16) C4—C5—H5A 120.4
C8—N—C9 124.86 (18) C5—C6—C1 120.85 (18)
C1—N—C9 125.16 (15) C5—C6—C7 133.59 (17)
C2—C1—N 127.17 (16) C1—C6—C7 105.55 (17)
C2—C1—C6 121.09 (17) O1—C7—C6 128.9 (2)
N—C1—C6 111.74 (16) O1—C7—C8 125.2 (2)
C3—C2—C1 116.40 (16) C6—C7—C8 105.93 (16)
C3—C2—H2A 121.8 O2—C8—N 125.0 (2)
C1—C2—H2A 121.8 O2—C8—C7 128.2 (2)
C2—C3—C4 123.89 (18) N—C8—C7 106.77 (17)
C2—C3—Cl 117.88 (14) N—C9—H9A 109.5
C4—C3—Cl 118.23 (15) N—C9—H9B 109.5
C5—C4—C3 118.50 (19) H9A—C9—H9B 109.5
C5—C4—H4A 120.8 N—C9—H9C 109.5
C3—C4—H4A 120.8 H9A—C9—H9C 109.5
C6—C5—C4 119.24 (17) H9B—C9—H9C 109.5
C6—C5—H5A 120.4
C8—N—C1—C2 179.45 (16) C2—C1—C6—C7 179.49 (15)
C9—N—C1—C2 0.2 (3) N—C1—C6—C7 −0.97 (19)
C8—N—C1—C6 0.0 (2) C5—C6—C7—O1 2.2 (4)
C9—N—C1—C6 −179.27 (17) C1—C6—C7—O1 −178.19 (19)
N—C1—C2—C3 −179.06 (16) C5—C6—C7—C8 −178.04 (19)
C6—C1—C2—C3 0.4 (2) C1—C6—C7—C8 1.52 (19)
C1—C2—C3—C4 1.0 (3) C1—N—C8—O2 −179.21 (19)
C1—C2—C3—Cl −178.72 (13) C9—N—C8—O2 0.0 (3)
C2—C3—C4—C5 −1.9 (3) C1—N—C8—C7 1.0 (2)
Cl—C3—C4—C5 177.82 (14) C9—N—C8—C7 −179.76 (16)
C3—C4—C5—C6 1.3 (3) O1—C7—C8—O2 −1.6 (3)
C4—C5—C6—C1 0.0 (3) C6—C7—C8—O2 178.7 (2)
C4—C5—C6—C7 179.48 (19) O1—C7—C8—N 178.14 (18)
C2—C1—C6—C5 −0.9 (3) C6—C7—C8—N −1.6 (2)
N—C1—C6—C5 178.65 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2A···O1i 0.93 2.50 3.419 (2) 168
C9—H9A···O2 0.96 2.53 2.906 (3) 103

Symmetry codes: (i) x−1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2487).

References

  1. Bouhfid, R., Joly, N., Massoui, M., Cecchelli, R., Lequart, V., Martin, P. & Essassi, E. M. (2005). Heterocycles, 65, 2949–2955.
  2. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. Matesic, L., Locke, J. M., Bremner, J. B., Pyne, S. G., Skropeta, D., Ranson, M. & Vine, K. L. (2008). Bioorg. Med. Chem. 16, 3118–3124. [DOI] [PubMed]
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Vine, K. L., Locke, J. M., Ranson, M., Pyne, S. G. & Bremner, J. B. (2007). Bioorg. Med. Chem. 15, 931–938. [DOI] [PubMed]
  9. Wu, W., Zheng, T., Cao, S. & Xiao, Z. (2011). Acta Cryst. E67, o246. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811051294/pv2487sup1.cif

e-68-00o14-sup1.cif (15.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051294/pv2487Isup2.hkl

e-68-00o14-Isup2.hkl (76.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811051294/pv2487Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES