Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Dec 3;68(Pt 1):o26. doi: 10.1107/S1600536811051464

N-(4-Bromo­phen­yl)-3,5-dinitro­benzamide

Sohail Saeed a,*, Naghmana Rashid a, Rizwan Hussain b, Wing-Tak Wong c
PMCID: PMC3254366  PMID: 22259531

Abstract

The title mol­ecule, C13H8BrN3O5, is slightly twisted, with the dihedral angle between the two benzene rings being 5.9 (1)°. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into one-dimensional chains running along [101]. Further stabilization of the crystal structure is provided by π–π inter­actions [shortest centroid–centroid distance = 3.6467 (17) Å].

Related literature

For background to the biological activity of N-substituted benzamides, their use in synthesis and for related structures, see: Saeed et al. (2011a ,b ).graphic file with name e-68-00o26-scheme1.jpg

Experimental

Crystal data

  • C13H8BrN3O5

  • M r = 366.13

  • Monoclinic, Inline graphic

  • a = 7.1273 (2) Å

  • b = 26.6676 (7) Å

  • c = 7.5428 (2) Å

  • β = 101.652 (2)°

  • V = 1404.10 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.96 mm−1

  • T = 296 K

  • 0.56 × 0.34 × 0.30 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.288, T max = 0.471

  • 18250 measured reflections

  • 2476 independent reflections

  • 2007 reflections with I > 2σ(I)

  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.108

  • S = 1.10

  • 2476 reflections

  • 204 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811051464/tk5029sup1.cif

e-68-00o26-sup1.cif (20.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051464/tk5029Isup2.hkl

e-68-00o26-Isup2.hkl (121.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811051464/tk5029Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.93 (3) 1.93 (3) 2.818 (3) 159 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

Dr Wesley T.-K. Chan, Professor Z.-Y. Zhou and the Hong Kong Polytechnic University are sincerely thanked for helping to collect the X-ray data.

supplementary crystallographic information

Comment

In connection with on-going studies into N-substituted benzamides (Saeed et al., 2011a,b), we recently determined the crystal structure of 3,5-dinitro-N-(1,3-thiazol-2-yl)-benzamide monohydrate (Saeed et al., 2011a). In this paper we present the crystal structure of the title compound (I), Fig. 1.

Intermolecular N1—H1N···O1 hydrogen bonds link the molecules into 1-D chains running along [101], Table 1 and Fig. 2. The dihedral angle between the two phenyl ring planes is 5.9 (1)°. Both nitro groups are slightly twisted, 3.3 (2)° and 4.6 (2)°, respectively, from the benzene ring plane, C2—C7. There are also weak π–π interactions between neighbouring molecules, Table 2.

Experimental

To a 250 ml round flask fitted with a condenser was added ethyl 4-bromoaniline (0.1 mol), dichloromethane (15 ml) and triethylamine(0.5 ml) with magnetic stirring. 3,5-Dinitrobenzoyl chloride (0.1 mol) was added gradually. The reaction mixture was stirred at room temperature for 1 h and then refluxed for 2 h. The product precipitated as a colourless powder, which was washed three times with water and dichloromethane. Recrystallization from ethyl acetate produced the crystals of the title compound.

Refinement

All of the C-bound H atoms are observable in a difference Fourier map but were placed at geometrical positions with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(Carrier). The N-bound H-atoms were located from difference Fourier map and refined isotropically.

Figures

Fig. 1.

Fig. 1.

The title molecule showing at the 50% probability displacement ellipsoids and the atom numbering scheme.

Fig. 2.

Fig. 2.

The packing diagram projected down the a axis of the compound showing 50% probability displacement ellipsoids. The cyan dotted lines indicate N—H···O hydrogen bonding interactions.

Crystal data

C13H8BrN3O5 F(000) = 728
Mr = 366.13 Dx = 1.732 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 18250 reflections
a = 7.1273 (2) Å θ = 2.9–25.0°
b = 26.6676 (7) Å µ = 2.96 mm1
c = 7.5428 (2) Å T = 296 K
β = 101.652 (2)° Block, colourless
V = 1404.10 (7) Å3 0.56 × 0.34 × 0.30 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 2476 independent reflections
Radiation source: fine-focus sealed tube 2007 reflections with I > 2σ(I)
graphite Rint = 0.060
ω and φ scan θmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.288, Tmax = 0.471 k = −31→31
18250 measured reflections l = −8→8

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0472P)2 + 0.9282P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
2476 reflections Δρmax = 0.25 e Å3
204 parameters Δρmin = −0.46 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0074 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.80856 (6) 0.046874 (16) 0.25109 (7) 0.0884 (2)
O1 0.6333 (3) 0.28369 (8) 0.5032 (3) 0.0569 (6)
O2 0.9867 (5) 0.31665 (12) 1.3107 (3) 0.0879 (9)
O3 0.9761 (6) 0.39563 (13) 1.3387 (4) 0.1162 (14)
O4 0.8205 (5) 0.50043 (9) 0.8040 (5) 0.0986 (10)
O5 0.7279 (6) 0.46522 (10) 0.5447 (5) 0.0967 (11)
N1 0.8777 (3) 0.24105 (8) 0.6787 (3) 0.0395 (6)
N2 0.9563 (5) 0.35817 (13) 1.2475 (4) 0.0651 (9)
N3 0.7853 (5) 0.46389 (11) 0.7070 (6) 0.0655 (9)
C1 0.7638 (4) 0.28096 (10) 0.6368 (4) 0.0393 (6)
C2 0.8027 (3) 0.32503 (10) 0.7622 (4) 0.0341 (6)
C3 0.8632 (4) 0.32045 (10) 0.9473 (4) 0.0362 (6)
H3 0.8834 0.2890 1.0013 0.043*
C4 0.8932 (4) 0.36369 (11) 1.0508 (4) 0.0430 (7)
C5 0.8704 (4) 0.41094 (11) 0.9800 (4) 0.0487 (8)
H5 0.8934 0.4394 1.0524 0.058*
C6 0.8110 (4) 0.41394 (10) 0.7935 (5) 0.0456 (7)
C7 0.7736 (4) 0.37237 (10) 0.6849 (4) 0.0405 (6)
H7 0.7293 0.3759 0.5608 0.049*
C8 0.8647 (4) 0.19583 (10) 0.5760 (4) 0.0392 (6)
C9 0.8261 (4) 0.19669 (12) 0.3885 (4) 0.0488 (7)
H9 0.8107 0.2271 0.3268 0.059*
C10 0.8108 (5) 0.15204 (15) 0.2943 (5) 0.0580 (9)
H10 0.7828 0.1522 0.1685 0.070*
C11 0.8370 (4) 0.10718 (13) 0.3874 (5) 0.0576 (9)
C12 0.8826 (5) 0.10586 (12) 0.5729 (5) 0.0561 (8)
H12 0.9045 0.0754 0.6338 0.067*
C13 0.8955 (4) 0.15065 (11) 0.6683 (4) 0.0481 (8)
H13 0.9247 0.1504 0.7942 0.058*
H1N 0.958 (4) 0.2412 (10) 0.792 (4) 0.035 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0662 (3) 0.0737 (3) 0.1252 (5) −0.01117 (19) 0.0187 (3) −0.0669 (3)
O1 0.0609 (13) 0.0435 (11) 0.0499 (13) 0.0067 (10) −0.0278 (11) −0.0061 (10)
O2 0.134 (3) 0.084 (2) 0.0409 (14) −0.0258 (18) 0.0057 (15) 0.0037 (14)
O3 0.205 (4) 0.095 (2) 0.0539 (16) −0.049 (2) 0.038 (2) −0.0396 (17)
O4 0.105 (2) 0.0269 (13) 0.161 (3) −0.0038 (13) 0.020 (2) −0.0076 (16)
O5 0.133 (3) 0.0518 (16) 0.104 (3) 0.0173 (17) 0.022 (2) 0.0374 (16)
N1 0.0429 (13) 0.0309 (12) 0.0361 (13) 0.0010 (10) −0.0123 (11) −0.0037 (10)
N2 0.089 (2) 0.070 (2) 0.0407 (16) −0.0319 (17) 0.0224 (15) −0.0123 (15)
N3 0.0619 (19) 0.0326 (15) 0.104 (3) 0.0066 (13) 0.0229 (18) 0.0138 (16)
C1 0.0383 (15) 0.0335 (14) 0.0394 (15) −0.0015 (11) −0.0079 (12) 0.0023 (12)
C2 0.0309 (14) 0.0294 (13) 0.0381 (15) 0.0005 (10) −0.0024 (11) 0.0013 (11)
C3 0.0344 (14) 0.0323 (13) 0.0394 (15) −0.0027 (11) 0.0016 (11) 0.0020 (11)
C4 0.0448 (16) 0.0465 (16) 0.0389 (16) −0.0090 (13) 0.0116 (13) −0.0087 (13)
C5 0.0530 (18) 0.0356 (15) 0.060 (2) −0.0102 (13) 0.0159 (15) −0.0130 (14)
C6 0.0410 (16) 0.0261 (14) 0.071 (2) 0.0006 (11) 0.0144 (15) 0.0024 (13)
C7 0.0370 (15) 0.0359 (15) 0.0447 (16) 0.0038 (12) −0.0012 (12) 0.0058 (13)
C8 0.0331 (14) 0.0350 (14) 0.0440 (16) −0.0016 (11) −0.0051 (11) −0.0108 (12)
C9 0.0471 (17) 0.0522 (18) 0.0446 (18) −0.0024 (14) 0.0035 (13) −0.0088 (14)
C10 0.0495 (19) 0.075 (2) 0.0485 (19) −0.0023 (16) 0.0085 (15) −0.0248 (18)
C11 0.0373 (17) 0.057 (2) 0.077 (2) −0.0065 (14) 0.0087 (16) −0.0346 (18)
C12 0.0495 (19) 0.0402 (16) 0.075 (2) −0.0007 (14) 0.0032 (16) −0.0147 (16)
C13 0.0492 (17) 0.0358 (15) 0.0517 (18) 0.0011 (13) −0.0077 (14) −0.0076 (13)

Geometric parameters (Å, °)

Br1—C11 1.898 (3) C4—C5 1.366 (4)
O1—C1 1.228 (3) C5—C6 1.387 (5)
O2—N2 1.208 (4) C5—H5 0.9300
O3—N2 1.205 (4) C6—C7 1.372 (4)
O4—N3 1.214 (4) C7—H7 0.9300
O5—N3 1.211 (5) C8—C9 1.385 (4)
N1—C1 1.337 (4) C8—C13 1.387 (4)
N1—C8 1.426 (3) C9—C10 1.380 (5)
N1—H1N 0.93 (3) C9—H9 0.9300
N2—C4 1.468 (4) C10—C11 1.381 (5)
N3—C6 1.478 (4) C10—H10 0.9300
C1—C2 1.499 (4) C11—C12 1.371 (5)
C2—C3 1.381 (4) C12—C13 1.388 (4)
C2—C7 1.388 (4) C12—H12 0.9300
C3—C4 1.385 (4) C13—H13 0.9300
C3—H3 0.9300
C1—N1—C8 125.1 (2) C7—C6—C5 122.8 (3)
C1—N1—H1N 116.5 (17) C7—C6—N3 118.2 (3)
C8—N1—H1N 117.7 (17) C5—C6—N3 119.0 (3)
O3—N2—O2 123.0 (3) C6—C7—C2 119.3 (3)
O3—N2—C4 118.1 (3) C6—C7—H7 120.3
O2—N2—C4 119.0 (3) C2—C7—H7 120.3
O5—N3—O4 124.9 (3) C9—C8—C13 120.4 (3)
O5—N3—C6 117.3 (3) C9—C8—N1 121.2 (3)
O4—N3—C6 117.7 (4) C13—C8—N1 118.4 (3)
O1—C1—N1 124.4 (3) C10—C9—C8 119.4 (3)
O1—C1—C2 118.9 (2) C10—C9—H9 120.3
N1—C1—C2 116.7 (2) C8—C9—H9 120.3
C3—C2—C7 119.6 (2) C9—C10—C11 119.8 (3)
C3—C2—C1 123.3 (2) C9—C10—H10 120.1
C7—C2—C1 117.1 (2) C11—C10—H10 120.1
C2—C3—C4 118.5 (2) C12—C11—C10 121.4 (3)
C2—C3—H3 120.7 C12—C11—Br1 120.6 (3)
C4—C3—H3 120.7 C10—C11—Br1 118.0 (3)
C5—C4—C3 123.7 (3) C11—C12—C13 118.9 (3)
C5—C4—N2 118.4 (3) C11—C12—H12 120.5
C3—C4—N2 117.8 (3) C13—C12—H12 120.5
C4—C5—C6 116.0 (3) C8—C13—C12 120.0 (3)
C4—C5—H5 122.0 C8—C13—H13 120.0
C6—C5—H5 122.0 C12—C13—H13 120.0

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.93 (3) 1.93 (3) 2.818 (3) 159 (3)

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2.

Table 2 Table 2. π–π interactions (Å, °) Cg1 and Cg2 are centroids of the rings C2-C7 and C8-C13 respectively, CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgJ_Perp is the perpendicular distance of CgJ from ring I.

I J CgI···CgJ Dihedral angle CgI_Perp CgJ_Perp
1 2i 3.7391 (17) 6.24 (14) 3.5945 (11) -3.6827 (13)
1 2ii 3.6467 (17) 6.24 (14) -3.5254 (12) 3.4038 (13)

symmetry operators: i: -1/2+x, 1/2-y, 1/2+z ii: 1/2+x, 1/2-y, 1/2+z

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5029).

References

  1. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  3. Saeed, S., Jasinski, J. P. & Butcher, R. J. (2011a). Acta Cryst. E67, o279. [DOI] [PMC free article] [PubMed]
  4. Saeed, S., Rashid, N., Ng, S. W. & Tiekink, E. R. T. (2011b). Acta Cryst. E67, o1194. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811051464/tk5029sup1.cif

e-68-00o26-sup1.cif (20.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051464/tk5029Isup2.hkl

e-68-00o26-Isup2.hkl (121.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811051464/tk5029Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES