Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Dec 3;68(Pt 1):o27. doi: 10.1107/S1600536811051580

2-({[4-(1,3-Benzothia­zol-2-yl)phen­yl]amino}methyl)­phenol

Kim Potgieter a, Thomas Gerber a, Eric Hosten a, Richard Betz a,*
PMCID: PMC3254391  PMID: 22259532

Abstract

In the title compound, C20H16N2OS, the aniline substituent essentially coplanar with the benzothia­zole moiety (with an r.m.s. deviation of all fitted non-H atoms of 0.0612 Å). The phenol group is almost perpendic­ular to the benzothia­zolylaniline group, with an inter­planar angle of 88.36 (2)°. In the crystal, mol­ecules aggregate as centrosymmetric dimers by pairs of O—H⋯N hydrogen bonds. C—H⋯O contacts and N—H⋯π(arene) inter­actions also occur.

Related literature

For general information about rhenium-supported radio-pharmaceuticals, see: Gerber et al. (2011). For the crystal structure of 4-(1,3-benzothia­zol-2-yl)-N-(2-pyridyl­meth­yl)aniline monohydrate, see: Su et al. (2009). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).graphic file with name e-68-00o27-scheme1.jpg

Experimental

Crystal data

  • C20H16N2OS

  • M r = 332.41

  • Monoclinic, Inline graphic

  • a = 13.3260 (4) Å

  • b = 5.7940 (1) Å

  • c = 24.2246 (6) Å

  • β = 121.546 (1)°

  • V = 1593.99 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 200 K

  • 0.44 × 0.17 × 0.11 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.929, T max = 1.000

  • 15126 measured reflections

  • 3953 independent reflections

  • 3272 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.092

  • S = 1.03

  • 3953 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811051580/gg2063sup1.cif

e-68-00o27-sup1.cif (24.3KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811051580/gg2063Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051580/gg2063Isup3.hkl

e-68-00o27-Isup3.hkl (193.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811051580/gg2063Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C31–C36 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.95 2.7459 (14) 164
C26—H26⋯O1i 0.95 2.48 3.3645 (16) 156
N2—H72⋯Cgii 0.82 (2) 2.61 (2) 3.4024 (14) 163.0 (19)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Mr Jason Kopp for helpful discussions.

supplementary crystallographic information

Comment

In our continuous efforts to create new radio-pharmaceuticals (Gerber et al., 2011), we attempted the coordination reaction of a potentially multidentate ligand towards a rhenium precursor upon which a crystalline reaction product was obtained. The crystal structure analysis showed the presence of the free ligand only whose molecular and crystal structure has not been reported to date. The structure of 4-(1,3-benzothiazol-2-yl)-N-(2-pyridylmethyl) aniline monohydrate is noted in the literature (Su et al., 2009).

The benzothiazolyl system and the attached aniline system are nearly co-planar (r.m.s. of all fitted non-hydrogen atoms including the nitrogen bound methylene group = 0.0612 Å). The phenolic substituent, however, adopts a nearly perpendicular orientation with respect to the rest of the molecule, with an interplanar angle of 88.36 (2)° between the two least-squares planes defined by both moieties (Fig. 1).

In the crystal, classical hydrogen bonds of the O–H···N type as well as C–H···O contacts (whose range lies by more than 0.1 Å below the sum of van-der-Waals radii of the atoms participating) are observed. The latter are supported by one of the hydrogen atoms of the central phenyl ring. In total, the molecules are connected to centrosymmetric dimers by these two interactions. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these contacts is R22(18)R22(24) on the unitary level. The nitrogen-bonded hydrogen atom forms a hydrogen bond to the aromatic system of the phenolic moiety, connecting the molecules to chains along the crystallographic b axis. Metrical parameters about these contacts as well as information about their symmetry is listed in Table 1. The shortest intercentroid distance between two aromatic systems was measured at 4.6019 (10) Å and is apparent between the phenyl unit of the benzothiazole moiety and the central C6 aromatic ring (Fig 2.)

The packing of the title compound in the crystal structure is shown in Figure 3.

Experimental

A mixture of 2.00 g of 4-aminobenzoic acid and 1.33 g of 2-aminothiophenol was added to hot polyphosphoric acid. The stirring solution was heated to 220 °C for four hours. The reaction solution was cooled to room temperature and poured into a 10% K2CO3 solution. The yellow precipitate which formed was filtered and dried under vacuum, yielding 4-(benzo[d]thiazol-2-yl)benzenamine. A solution of 1.0 g of this product dissolved in 25 cm3 of methanol was added to a 25 cm3 methanol solution of 2-hydroxybenzaldehyde (0.4 g). The solution was refluxed for three hours after which it was cooled to room temperature and stirred overnight. An excess of NaBH4 (2.0 g) was added in portions with stirring and the mixture was left to stir at room temperature overnight. The solvent was removed by evaporation and 50 cm3 of water was added. HCl was added to adjust the pH to 6, resulting in the formation of a light yellow precipitate which was filtered and dried under vacuum. Crystals suitable for the X-ray diffraction study were obtained upon the attempted synthesis of a rhenium coordination compound in ethanol.

Refinement

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms, C—H 0.99 Å for the methylene group) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atom of the hydroxyl group was allowed to rotate with a fixed angle around the C—O bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(O). The nitrogen-bound H atom was located on a difference Fourier map and refined freely with isotropic parameters.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).

Fig. 2.

Fig. 2.

Intermolecular contacts, viewed along [0 1 0]. Blue dashed lines indicate classical hydrogen bonds of the O–H···N type, green dashed lines indicate C–H···O contacts. Symmetry operator: i -x, -y, -z.

Fig. 3.

Fig. 3.

Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level).

Crystal data

C20H16N2OS F(000) = 696
Mr = 332.41 Dx = 1.385 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybc Cell parameters from 7469 reflections
a = 13.3260 (4) Å θ = 3.1–28.3°
b = 5.7940 (1) Å µ = 0.21 mm1
c = 24.2246 (6) Å T = 200 K
β = 121.546 (1)° Platelet, brown
V = 1593.99 (7) Å3 0.44 × 0.17 × 0.11 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 3953 independent reflections
Radiation source: fine-focus sealed tube 3272 reflections with I > 2σ(I)
graphite Rint = 0.018
φ and ω scans θmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −17→17
Tmin = 0.929, Tmax = 1.000 k = −4→7
15126 measured reflections l = −31→32

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.6757P] where P = (Fo2 + 2Fc2)/3
3953 reflections (Δ/σ)max = 0.001
221 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.23 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.42147 (3) 0.68632 (6) 0.257240 (17) 0.03011 (10)
O1 −0.15303 (8) 0.05617 (17) −0.19880 (5) 0.0317 (2)
H1 −0.1951 −0.0563 −0.2167 0.048*
N1 0.31149 (9) 0.30173 (19) 0.24291 (5) 0.0264 (2)
N2 0.09494 (11) 0.5026 (2) −0.06249 (6) 0.0317 (3)
H72 0.1055 (16) 0.621 (4) −0.0774 (9) 0.049 (5)*
C1 0.32433 (11) 0.4656 (2) 0.20995 (6) 0.0246 (3)
C2 0.00373 (12) 0.3473 (2) −0.10753 (6) 0.0291 (3)
H2A −0.0541 0.4367 −0.1460 0.035*
H2B −0.0380 0.2851 −0.0869 0.035*
C11 0.44852 (11) 0.5440 (2) 0.32639 (7) 0.0284 (3)
C12 0.38217 (11) 0.3396 (2) 0.30904 (6) 0.0273 (3)
C13 0.39226 (13) 0.1916 (3) 0.35715 (7) 0.0343 (3)
H13 0.3484 0.0521 0.3461 0.041*
C14 0.46741 (14) 0.2528 (3) 0.42110 (7) 0.0398 (3)
H14 0.4755 0.1534 0.4544 0.048*
C15 0.53187 (13) 0.4580 (3) 0.43785 (7) 0.0390 (3)
H15 0.5821 0.4962 0.4823 0.047*
C16 0.52407 (12) 0.6063 (3) 0.39127 (7) 0.0344 (3)
H16 0.5683 0.7454 0.4028 0.041*
C21 0.26744 (11) 0.4708 (2) 0.13979 (6) 0.0254 (3)
C22 0.27965 (12) 0.6609 (2) 0.10797 (7) 0.0295 (3)
H22 0.3280 0.7866 0.1328 0.035*
C23 0.22327 (12) 0.6691 (2) 0.04174 (7) 0.0305 (3)
H23 0.2331 0.8004 0.0215 0.037*
C24 0.15098 (11) 0.4861 (2) 0.00317 (6) 0.0266 (3)
C25 0.14071 (12) 0.2928 (2) 0.03483 (7) 0.0296 (3)
H25 0.0941 0.1652 0.0101 0.035*
C26 0.19777 (12) 0.2865 (2) 0.10154 (6) 0.0286 (3)
H26 0.1896 0.1541 0.1220 0.034*
C31 0.04626 (11) 0.1472 (2) −0.12987 (6) 0.0250 (3)
C32 −0.03897 (11) 0.0004 (2) −0.17724 (6) 0.0258 (3)
C33 −0.00650 (12) −0.1827 (2) −0.20165 (6) 0.0306 (3)
H33 −0.0649 −0.2806 −0.2340 0.037*
C34 0.11211 (13) −0.2216 (3) −0.17839 (7) 0.0351 (3)
H34 0.1348 −0.3467 −0.1949 0.042*
C35 0.19715 (12) −0.0793 (3) −0.13149 (7) 0.0343 (3)
H35 0.2781 −0.1073 −0.1155 0.041*
C36 0.16400 (11) 0.1046 (3) −0.10779 (6) 0.0302 (3)
H36 0.2228 0.2031 −0.0759 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.02935 (17) 0.02586 (17) 0.03296 (18) −0.00579 (12) 0.01480 (14) −0.00429 (13)
O1 0.0241 (5) 0.0321 (5) 0.0340 (5) −0.0054 (4) 0.0118 (4) −0.0005 (4)
N1 0.0234 (5) 0.0264 (5) 0.0283 (5) −0.0015 (4) 0.0129 (4) −0.0011 (4)
N2 0.0387 (7) 0.0273 (6) 0.0282 (6) −0.0073 (5) 0.0170 (5) −0.0016 (5)
C1 0.0209 (6) 0.0219 (6) 0.0310 (6) −0.0003 (4) 0.0137 (5) −0.0028 (5)
C2 0.0284 (6) 0.0303 (7) 0.0277 (6) −0.0025 (5) 0.0139 (5) −0.0015 (5)
C11 0.0235 (6) 0.0298 (7) 0.0322 (7) 0.0015 (5) 0.0147 (5) −0.0033 (5)
C12 0.0227 (6) 0.0293 (6) 0.0297 (6) 0.0017 (5) 0.0137 (5) −0.0015 (5)
C13 0.0342 (7) 0.0341 (7) 0.0349 (7) 0.0010 (6) 0.0182 (6) 0.0023 (6)
C14 0.0390 (8) 0.0489 (9) 0.0314 (7) 0.0077 (7) 0.0184 (6) 0.0055 (7)
C15 0.0305 (7) 0.0531 (9) 0.0281 (7) 0.0051 (6) 0.0117 (6) −0.0059 (6)
C16 0.0264 (6) 0.0396 (8) 0.0342 (7) 0.0003 (6) 0.0138 (6) −0.0093 (6)
C21 0.0231 (6) 0.0245 (6) 0.0300 (6) 0.0003 (5) 0.0149 (5) −0.0010 (5)
C22 0.0281 (6) 0.0244 (6) 0.0332 (7) −0.0057 (5) 0.0142 (6) −0.0027 (5)
C23 0.0328 (7) 0.0252 (6) 0.0339 (7) −0.0044 (5) 0.0177 (6) 0.0018 (5)
C24 0.0275 (6) 0.0246 (6) 0.0299 (6) 0.0004 (5) 0.0166 (5) −0.0007 (5)
C25 0.0352 (7) 0.0237 (6) 0.0314 (7) −0.0058 (5) 0.0186 (6) −0.0043 (5)
C26 0.0346 (7) 0.0228 (6) 0.0321 (7) −0.0030 (5) 0.0201 (6) −0.0009 (5)
C31 0.0266 (6) 0.0275 (6) 0.0216 (6) −0.0027 (5) 0.0131 (5) 0.0017 (5)
C32 0.0253 (6) 0.0294 (6) 0.0211 (6) −0.0027 (5) 0.0111 (5) 0.0038 (5)
C33 0.0344 (7) 0.0301 (7) 0.0236 (6) −0.0045 (5) 0.0128 (5) −0.0019 (5)
C34 0.0400 (8) 0.0370 (8) 0.0309 (7) 0.0022 (6) 0.0204 (6) −0.0031 (6)
C35 0.0279 (7) 0.0420 (8) 0.0337 (7) 0.0009 (6) 0.0165 (6) −0.0007 (6)
C36 0.0260 (6) 0.0350 (7) 0.0274 (6) −0.0046 (5) 0.0124 (5) −0.0023 (5)

Geometric parameters (Å, °)

S1—C11 1.7275 (14) C16—H16 0.9500
S1—C1 1.7526 (13) C21—C26 1.3999 (18)
O1—C32 1.3627 (15) C21—C22 1.4018 (18)
O1—H1 0.8200 C22—C23 1.3709 (19)
N1—C1 1.3082 (17) C22—H22 0.9500
N1—C12 1.3866 (16) C23—C24 1.4083 (18)
N2—C24 1.3616 (17) C23—H23 0.9500
N2—C2 1.4459 (17) C24—C25 1.4038 (18)
N2—H72 0.82 (2) C25—C26 1.3804 (19)
C1—C21 1.4547 (18) C25—H25 0.9500
C2—C31 1.5098 (19) C26—H26 0.9500
C2—H2A 0.9900 C31—C36 1.3893 (18)
C2—H2B 0.9900 C31—C32 1.4022 (17)
C11—C16 1.3995 (19) C32—C33 1.3890 (19)
C11—C12 1.4042 (19) C33—C34 1.391 (2)
C12—C13 1.3954 (19) C33—H33 0.9500
C13—C14 1.380 (2) C34—C35 1.381 (2)
C13—H13 0.9500 C34—H34 0.9500
C14—C15 1.397 (2) C35—C36 1.388 (2)
C14—H14 0.9500 C35—H35 0.9500
C15—C16 1.378 (2) C36—H36 0.9500
C15—H15 0.9500
C11—S1—C1 89.62 (6) C22—C21—C1 121.28 (11)
C32—O1—H1 109.4 C23—C22—C21 121.38 (12)
C1—N1—C12 111.32 (11) C23—C22—H22 119.3
C24—N2—C2 124.65 (12) C21—C22—H22 119.3
C24—N2—H72 117.2 (13) C22—C23—C24 121.07 (12)
C2—N2—H72 117.3 (13) C22—C23—H23 119.5
N1—C1—C21 124.99 (11) C24—C23—H23 119.5
N1—C1—S1 114.74 (10) N2—C24—C25 122.93 (12)
C21—C1—S1 120.26 (9) N2—C24—C23 119.26 (12)
N2—C2—C31 115.06 (11) C25—C24—C23 117.81 (12)
N2—C2—H2A 108.5 C26—C25—C24 120.60 (12)
C31—C2—H2A 108.5 C26—C25—H25 119.7
N2—C2—H2B 108.5 C24—C25—H25 119.7
C31—C2—H2B 108.5 C25—C26—C21 121.54 (12)
H2A—C2—H2B 107.5 C25—C26—H26 119.2
C16—C11—C12 121.61 (13) C21—C26—H26 119.2
C16—C11—S1 128.92 (11) C36—C31—C32 118.40 (12)
C12—C11—S1 109.46 (10) C36—C31—C2 123.94 (12)
N1—C12—C13 125.32 (12) C32—C31—C2 117.63 (11)
N1—C12—C11 114.83 (12) O1—C32—C33 123.46 (12)
C13—C12—C11 119.84 (13) O1—C32—C31 115.67 (12)
C14—C13—C12 118.43 (14) C33—C32—C31 120.80 (12)
C14—C13—H13 120.8 C32—C33—C34 119.49 (12)
C12—C13—H13 120.8 C32—C33—H33 120.3
C13—C14—C15 121.28 (15) C34—C33—H33 120.3
C13—C14—H14 119.4 C35—C34—C33 120.40 (13)
C15—C14—H14 119.4 C35—C34—H34 119.8
C16—C15—C14 121.42 (14) C33—C34—H34 119.8
C16—C15—H15 119.3 C34—C35—C36 119.79 (13)
C14—C15—H15 119.3 C34—C35—H35 120.1
C15—C16—C11 117.41 (14) C36—C35—H35 120.1
C15—C16—H16 121.3 C35—C36—C31 121.11 (12)
C11—C16—H16 121.3 C35—C36—H36 119.4
C26—C21—C22 117.56 (12) C31—C36—H36 119.4
C26—C21—C1 121.16 (11)
C12—N1—C1—C21 176.61 (11) C1—C21—C22—C23 −178.02 (12)
C12—N1—C1—S1 −1.79 (14) C21—C22—C23—C24 −0.1 (2)
C11—S1—C1—N1 1.11 (10) C2—N2—C24—C25 11.3 (2)
C11—S1—C1—C21 −177.37 (11) C2—N2—C24—C23 −169.07 (13)
C24—N2—C2—C31 −93.43 (16) C22—C23—C24—N2 178.90 (13)
C1—S1—C11—C16 178.94 (13) C22—C23—C24—C25 −1.4 (2)
C1—S1—C11—C12 −0.09 (10) N2—C24—C25—C26 −178.83 (13)
C1—N1—C12—C13 −177.24 (13) C23—C24—C25—C26 1.5 (2)
C1—N1—C12—C11 1.72 (15) C24—C25—C26—C21 −0.1 (2)
C16—C11—C12—N1 180.00 (12) C22—C21—C26—C25 −1.5 (2)
S1—C11—C12—N1 −0.88 (14) C1—C21—C26—C25 178.10 (12)
C16—C11—C12—C13 −1.0 (2) N2—C2—C31—C36 2.59 (19)
S1—C11—C12—C13 178.14 (10) N2—C2—C31—C32 −175.35 (11)
N1—C12—C13—C14 179.44 (13) C36—C31—C32—O1 −177.51 (11)
C11—C12—C13—C14 0.5 (2) C2—C31—C32—O1 0.55 (16)
C12—C13—C14—C15 0.3 (2) C36—C31—C32—C33 −0.21 (18)
C13—C14—C15—C16 −0.8 (2) C2—C31—C32—C33 177.85 (12)
C14—C15—C16—C11 0.3 (2) O1—C32—C33—C34 177.58 (12)
C12—C11—C16—C15 0.5 (2) C31—C32—C33—C34 0.49 (19)
S1—C11—C16—C15 −178.40 (11) C32—C33—C34—C35 −0.1 (2)
N1—C1—C21—C26 −3.99 (19) C33—C34—C35—C36 −0.5 (2)
S1—C1—C21—C26 174.33 (10) C34—C35—C36—C31 0.8 (2)
N1—C1—C21—C22 175.56 (12) C32—C31—C36—C35 −0.44 (19)
S1—C1—C21—C22 −6.12 (17) C2—C31—C36—C35 −178.37 (13)
C26—C21—C22—C23 1.5 (2)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C31–C36 ring.
D—H···A D—H H···A D···A D—H···A
O1—H1···N1i 0.82 1.95 2.7459 (14) 164.
C26—H26···O1i 0.95 2.48 3.3645 (16) 156.
N2—H72···Cgii 0.82 (2) 2.61 (2) 3.4024 (14) 163.0 (19)

Symmetry codes: (i) −x, −y, −z; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2063).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2008). SADABS Bruker Inc., Madison, Wisconsin, USA.
  4. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Gerber, T. I. A., Betz, R., Booysen, I. N., Potgieter, K. C. & Mayer, P. (2011). Polyhedron, 30, 1739–1745.
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Su, Z.-H., Wang, Q.-Z., Teng, L. & Zhang, Y. (2009). Acta Cryst. E65, o86. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811051580/gg2063sup1.cif

e-68-00o27-sup1.cif (24.3KB, cif)

Supplementary material file. DOI: 10.1107/S1600536811051580/gg2063Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051580/gg2063Isup3.hkl

e-68-00o27-Isup3.hkl (193.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811051580/gg2063Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES