Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Dec 7;68(Pt 1):o32–o33. doi: 10.1107/S1600536811051221

4′,5-Dihy­droxy-7-meth­oxy­flavanone dihydrate

Iván Brito a,*, Jorge Bórquez a, Mario Simirgiotis a, Alejandro Cárdenas b, Matías López-Rodríguez c
PMCID: PMC3254395  PMID: 22259537

Abstract

The title compound, C16H14O5·2H2O [systematic name: 5-hy­droxy-2-(4-hy­droxy­phen­yl)-7-meth­oxy­chroman-4-one dihydrate], is a natural phytoalexin flavone isolated from the native chilean species Heliotropium taltalense and crystallizes with an organic mol­ecule and two water mol­ecules in the asymmetric unit. The 5-hy­droxy group forms a strong intra­molecular hydrogen bond with the carbonyl group, resulting in a six-membered ring. In the crystal, the components are linked by O—H⋯O hydrogen bonds, forming a three-dimensional network. The 4-hy­droxy­phenyl benzene ring is bonded equatorially to the pyrone ring, which adopts a slightly distorted sofa conformation. The title compound is the hydrated form of a previously reported structure [Shoja (1990). Acta Cryst. C46, 1969–1971]. There are only slight variations in the mol­ecular geometry between the two compounds.

Related literature

For the first study of the title compound, see: Narasimhachari & Seshadri (1949); Atkinson & Blakeman (1982). For its biological properties, see: Plowright et al. (1996); Atkinson & Blakeman (1982), Saito et al. (2008). For its spectroscopic properties, see: Agrawal (1989); Ogawa et al. (2007). For the structure of the unsolvated compound, see: Shoja (1990). For similar compounds, see: Modak et al. (2009). For graph-set notation, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975). For mol­ecular geometry calculations, see: Macrae et al. (2008). graphic file with name e-68-00o32-scheme1.jpg

Experimental

Crystal data

  • C16H14O5·2H2O

  • M r = 322.30

  • Orthorhombic, Inline graphic

  • a = 5.0869 (10) Å

  • b = 9.4622 (19) Å

  • c = 32.318 (7) Å

  • V = 1555.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.03 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer

  • 9743 measured reflections

  • 2021 independent reflections

  • 1623 reflections with I > 2σ(I)

  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.075

  • wR(F 2) = 0.180

  • S = 1.17

  • 2021 reflections

  • 224 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: COLLECT (Nonius, 2000; cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811051221/kj2193sup1.cif

e-68-00o32-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051221/kj2193Isup2.hkl

e-68-00o32-Isup2.hkl (97.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811051221/kj2193Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.82 1.90 2.630 (5) 147
O5—H5⋯O7 0.76 (9) 1.99 (9) 2.720 (7) 163 (7)
O6—H6A⋯O2i 0.87 (9) 2.00 (8) 2.847 (6) 166 (7)
O6—H6B⋯O3ii 0.81 (6) 2.11 (6) 2.915 (5) 174 (8)
O7—H7A⋯O5i 0.85 2.27 3.055 (7) 153
O7—H7B⋯O6iii 0.85 1.94 2.763 (6) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

IB thanks the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system. The authors acknowdledge funds from FONDECYT (1110068) and U. Antofagasta (CODEI N° 1383).

supplementary crystallographic information

Comment

The crystal structure of the flavanone (S)-sakuranetin (5,4'-di-hydroxy-7-methoxyflavanone dihydrate, C16H14O5.2H2O) which was isolated from the native Chilean shrub Heliotropium taltalense (Heliotropiaceae) collected in Quebrada de Paposo II Region of Chile, is presented in this paper. (S)-Sakuranetin is a methylated flavanone obtained from the bark of Prunuspuddum (Narasimhachari & Seshadri, 1949) and later from other Prunus species (Atkinson & Blakeman, 1982). This compound is a phytoalexin produced in response to infection in rice (Plowright et al., 1996) with several beneficial biological properties such as antimicrobial activity (Atkinson & Blakeman, 1982) and the induction of adipogenesis (Saito et al., 2008). H. taltalense, is an endemic shrub or bush that grows in arid regions which obtains survival water from condensation from the Chilean coastal fog. Several Heliotropium species grow freely mainly in the north of Chile and they have glandular secreting trichomes whose principal rol is to produce a gummy exudate aimed to protect the plant from environmental factors and predators. This exudate is composed mainly of waxes and a mixture of phenolic compounds, mainly flavonoids and aromatic geranyl derivatives (Modak et al., 2009). The title compound (Fig. 1) crystallizes with an organic molecule and two water molecules in the asymmetric unit. The hydroxy group at C5 forms a strong intramolecular hydrogen bond with the carbonyl group with graph-set notation S(6) (Bernstein, et al., 1995). This interaction is observed in the unsolvated compound too, (Shoja, 1990). In the crystal, the components are linked by intermolecular O—H···O hydrogen bonds with an average O···O distance of 2.86 (14) Å and O—H···O angles in the range 147–174°, forming a 3-D network (Fig. 2). The 4'-hydroxyphenyl ring is bonded equatorially to the pyrone ring which adopts a slightly distorted sofa conformation with the C2 atom 0.328 (5) Å out of plane defined by the C2/C3/C4/C9/C10/O1 atoms, [puckering amplitude QT= 0.465 (5) Å; θ =124.9 (6)° & φ = 245.3 (7)° (Cremer & Pople, 1975)]. The title compound is the hydrated form of a previously reported structure. There are only slight variations in the molecular geometry of both compounds, so when both compound are superimposed all atoms are fitted within RMSD 0.0715 Å, (with inversion & flexibility), (Macrae et al., 2008), as is shown in Fig. 3.

Experimental

Dried aerial parts of H. taltalense (1.8 kg) were immersed in ethyl acetate (EtOAc) for one minute (2 l) in order to obtain an extract from the exudate. The extract was immediately concentrated in vacuo and the resulting dark brown syrup (47 g) was adsorbed on to silicagel 60 G (50 g) and slurred onto the top of a column containing silica gel 60 H (0.5 kg), partitioned using a medium pressure pump with an isocratic eluent (n-hexane–EtOAc 8:2), to obtain six partitions (fractions A to F: n-hexane, n-hexane–EtOAc 95:5, n-hexane–EtOAc 90:10, n-hexane–EtOAc 80:20, n-hexane–EtOAc 50:50 and pure EtOAc). Further purification by a combination of chromatography on silicagel 60 H and permeation through Sephadex LH-20 (eluting with methanol-water 7:3) of the fraction 20% hexane-ethyl acetate (fraction D, 15 g) afforded the phytoalexin 5,4'-di-hydroxy-7-methoxyflavanone dihydrate for which 1-D and 2-D NMR data are consistent with literature (Agrawal, 1989; Ogawa, et al., 2007). Recrystallization from hexane-ethyl acetate (9:1) at -20 ° C yielded yellow crystals of (S)-sakuranetin dihydrate (0.039 g), suitable for X-ray diffraction analysis.

Refinement

The parameters of the three H atoms bonded to atoms O5 (hydroxyl) and O6 (water) were located in difference maps and refined isotropically; all other H atoms were treated using a riding model, with C—H distances are in the range 0.93 – 0.98 Å and O—H distance of 0.82 and 0.85 Å, with Uiso(H) = 1.2Ueq(C,O) or 1.5Ueq(methyl C). The absolute configuration could not be established by the Flack method and the 772 observed Friedel opposites were merged.

Figures

Fig. 1.

Fig. 1.

: Molecular structure of title compound. Displacement ellipsoids are shown at the 50% probability level.

Fig. 2.

Fig. 2.

: A view of the crystal packing of the title compound, showing the intermolecular and intramolecular hydrogen bonding.

Fig. 3.

Fig. 3.

Superimposed structures for the title compound (green) and the unsolvated compound (red).

Crystal data

C16H14O5·2H2O F(000) = 680
Mr = 322.30 Dx = 1.376 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2419 reflections
a = 5.0869 (10) Å θ = 3.3–28.4°
b = 9.4622 (19) Å µ = 0.11 mm1
c = 32.318 (7) Å T = 293 K
V = 1555.6 (5) Å3 Block, yellow
Z = 4 0.20 × 0.15 × 0.03 mm

Data collection

Nonius KappaCCD area-detector diffractometer 1623 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.068
graphite θmax = 28.4°, θmin = 3.3°
φ and ω scans with κ offsets h = 0→6
9743 measured reflections k = 0→12
2021 independent reflections l = −40→42

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180 H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0649P)2 + 1.4205P] where P = (Fo2 + 2Fc2)/3
2021 reflections (Δ/σ)max < 0.001
224 parameters Δρmax = 0.38 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1698 (7) 0.3272 (3) 0.39766 (8) 0.0317 (8)
O2 −0.3650 (7) 0.5120 (4) 0.31855 (10) 0.0370 (9)
O3 −0.1585 (7) 0.3656 (4) 0.25747 (9) 0.0350 (8)
H3 −0.2576 0.4224 0.2686 0.053*
O4 0.5380 (7) 0.0576 (4) 0.28692 (9) 0.0341 (8)
O5 0.1305 (11) 0.5341 (6) 0.58135 (12) 0.0610 (15)
H5 0.247 (18) 0.564 (8) 0.593 (2) 0.07 (3)*
C2 0.0708 (9) 0.4690 (5) 0.40716 (13) 0.0266 (10)
H2 0.1893 0.5381 0.3945 0.032*
C3 −0.2023 (9) 0.4877 (6) 0.38806 (13) 0.0345 (12)
H3A −0.3254 0.4250 0.4018 0.041*
H3B −0.2613 0.5840 0.3924 0.041*
C4 −0.2002 (9) 0.4562 (5) 0.34223 (13) 0.0265 (10)
C10 −0.0071 (9) 0.3561 (5) 0.32828 (12) 0.0247 (9)
C5 0.0125 (9) 0.3128 (5) 0.28607 (12) 0.0248 (10)
C6 0.1952 (10) 0.2153 (5) 0.27344 (13) 0.0278 (10)
H6 0.2063 0.1899 0.2457 0.033*
C7 0.3658 (9) 0.1537 (5) 0.30263 (13) 0.0251 (9)
C8 0.3505 (9) 0.1902 (5) 0.34455 (13) 0.0267 (9)
H8 0.4586 0.1465 0.3639 0.032*
C9 0.1720 (8) 0.2925 (5) 0.35667 (12) 0.0221 (9)
C1' 0.0839 (9) 0.4870 (5) 0.45324 (13) 0.0265 (10)
C2' −0.0739 (11) 0.4059 (6) 0.48002 (14) 0.0379 (12)
H2' −0.1923 0.3410 0.4691 0.046*
C3' −0.0542 (12) 0.4220 (6) 0.52256 (15) 0.0439 (14)
H3' −0.1581 0.3673 0.5400 0.053*
C4' 0.1203 (10) 0.5197 (6) 0.53925 (13) 0.0367 (12)
C5' 0.2769 (12) 0.6004 (6) 0.51347 (15) 0.0441 (14)
H5' 0.3940 0.6656 0.5246 0.053*
C6' 0.2585 (11) 0.5837 (6) 0.47061 (14) 0.0361 (12)
H6' 0.3645 0.6381 0.4534 0.043*
C11 0.7076 (11) −0.0153 (6) 0.31527 (15) 0.0364 (12)
H11A 0.6039 −0.0734 0.3334 0.055*
H11B 0.8043 0.0523 0.3314 0.055*
H11C 0.8280 −0.0737 0.3001 0.055*
O6 0.2193 (9) 0.7134 (5) 0.32036 (13) 0.0500 (11)
H6A 0.354 (18) 0.659 (8) 0.316 (2) 0.07 (2)*
H6B 0.209 (15) 0.761 (6) 0.2996 (19) 0.06 (2)*
O7 0.5931 (9) 0.6486 (6) 0.60698 (12) 0.0586 (13)
H7A 0.7450 0.6441 0.5961 0.088*
H7B 0.6306 0.6736 0.6315 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0332 (19) 0.0370 (19) 0.0248 (15) 0.0105 (18) −0.0035 (13) −0.0066 (13)
O2 0.0244 (17) 0.046 (2) 0.0406 (18) 0.0133 (18) −0.0064 (14) 0.0006 (16)
O3 0.0334 (19) 0.039 (2) 0.0324 (16) 0.0081 (19) −0.0069 (14) 0.0014 (14)
O4 0.0292 (18) 0.041 (2) 0.0324 (16) 0.0126 (17) −0.0009 (14) −0.0085 (14)
O5 0.061 (3) 0.096 (4) 0.0258 (18) −0.028 (3) 0.0028 (19) −0.006 (2)
C2 0.018 (2) 0.032 (2) 0.030 (2) 0.001 (2) 0.0035 (17) −0.0057 (18)
C3 0.022 (2) 0.044 (3) 0.038 (2) 0.012 (3) 0.0049 (19) −0.006 (2)
C4 0.018 (2) 0.029 (2) 0.032 (2) 0.000 (2) −0.0033 (18) 0.0001 (18)
C10 0.018 (2) 0.028 (2) 0.028 (2) −0.001 (2) 0.0005 (17) −0.0006 (17)
C5 0.023 (2) 0.027 (2) 0.025 (2) −0.005 (2) −0.0066 (17) 0.0041 (17)
C6 0.032 (2) 0.031 (2) 0.0204 (19) 0.002 (2) 0.0008 (18) −0.0029 (17)
C7 0.017 (2) 0.026 (2) 0.032 (2) 0.002 (2) 0.0021 (17) −0.0008 (18)
C8 0.023 (2) 0.031 (2) 0.026 (2) 0.002 (2) −0.0012 (17) 0.0009 (18)
C9 0.0115 (18) 0.029 (2) 0.0259 (19) −0.0042 (19) −0.0017 (15) −0.0002 (17)
C1' 0.022 (2) 0.029 (2) 0.028 (2) −0.001 (2) −0.0004 (17) −0.0030 (18)
C2' 0.032 (3) 0.048 (3) 0.033 (2) −0.008 (3) −0.002 (2) −0.006 (2)
C3' 0.039 (3) 0.054 (4) 0.039 (3) −0.012 (3) 0.012 (2) 0.003 (2)
C4' 0.034 (3) 0.050 (3) 0.027 (2) −0.001 (3) 0.005 (2) 0.000 (2)
C5' 0.039 (3) 0.057 (4) 0.036 (3) −0.008 (3) −0.003 (2) −0.009 (2)
C6' 0.029 (3) 0.047 (3) 0.031 (2) −0.012 (2) 0.0050 (19) −0.001 (2)
C11 0.027 (3) 0.040 (3) 0.042 (3) 0.014 (3) 0.000 (2) −0.001 (2)
O6 0.048 (3) 0.058 (3) 0.044 (2) 0.020 (2) 0.007 (2) 0.001 (2)
O7 0.049 (3) 0.084 (3) 0.042 (2) −0.008 (3) −0.0053 (19) −0.007 (2)

Geometric parameters (Å, °)

O1—C9 1.365 (5) C7—C8 1.400 (6)
O1—C2 1.465 (5) C8—C9 1.383 (6)
O2—C4 1.252 (5) C8—H8 0.9300
O3—C5 1.364 (5) C1'—C6' 1.393 (6)
O3—H3 0.8200 C1'—C2' 1.408 (7)
O4—C7 1.361 (5) C2'—C3' 1.387 (7)
O4—C11 1.435 (6) C2'—H2' 0.9300
O5—C4' 1.369 (6) C3'—C4' 1.391 (7)
O5—H5 0.75 (8) C3'—H3' 0.9300
C2—C1' 1.501 (6) C4'—C5' 1.382 (7)
C2—C3 1.530 (6) C5'—C6' 1.397 (6)
C2—H2 0.9800 C5'—H5' 0.9300
C3—C4 1.511 (6) C6'—H6' 0.9300
C3—H3A 0.9700 C11—H11A 0.9600
C3—H3B 0.9700 C11—H11B 0.9600
C4—C10 1.437 (6) C11—H11C 0.9600
C10—C9 1.426 (6) O6—H6A 0.87 (9)
C10—C5 1.427 (6) O6—H6B 0.81 (6)
C5—C6 1.372 (6) O7—H7A 0.8500
C6—C7 1.408 (6) O7—H7B 0.8501
C6—H6 0.9300
C9—O1—C2 115.3 (3) C9—C8—H8 120.6
C5—O3—H3 109.5 C7—C8—H8 120.6
C7—O4—C11 118.0 (4) O1—C9—C8 116.7 (4)
C4'—O5—H5 123 (6) O1—C9—C10 121.2 (4)
O1—C2—C1' 107.3 (4) C8—C9—C10 122.2 (4)
O1—C2—C3 109.5 (4) C6'—C1'—C2' 118.3 (4)
C1'—C2—C3 115.3 (4) C6'—C1'—C2 120.2 (4)
O1—C2—H2 108.2 C2'—C1'—C2 121.5 (4)
C1'—C2—H2 108.2 C3'—C2'—C1' 120.6 (5)
C3—C2—H2 108.2 C3'—C2'—H2' 119.7
C4—C3—C2 111.5 (4) C1'—C2'—H2' 119.7
C4—C3—H3A 109.3 C2'—C3'—C4' 120.2 (5)
C2—C3—H3A 109.3 C2'—C3'—H3' 119.9
C4—C3—H3B 109.3 C4'—C3'—H3' 119.9
C2—C3—H3B 109.3 O5—C4'—C5' 121.5 (5)
H3A—C3—H3B 108.0 O5—C4'—C3' 118.4 (5)
O2—C4—C10 123.0 (4) C5'—C4'—C3' 120.1 (5)
O2—C4—C3 120.7 (4) C4'—C5'—C6' 119.8 (5)
C10—C4—C3 116.3 (4) C4'—C5'—H5' 120.1
C9—C10—C5 116.7 (4) C6'—C5'—H5' 120.1
C9—C10—C4 120.9 (4) C1'—C6'—C5' 121.1 (4)
C5—C10—C4 122.4 (4) C1'—C6'—H6' 119.5
O3—C5—C6 118.5 (4) C5'—C6'—H6' 119.5
O3—C5—C10 119.9 (4) O4—C11—H11A 109.5
C6—C5—C10 121.6 (4) O4—C11—H11B 109.5
C5—C6—C7 119.8 (4) H11A—C11—H11B 109.5
C5—C6—H6 120.1 O4—C11—H11C 109.5
C7—C6—H6 120.1 H11A—C11—H11C 109.5
O4—C7—C8 124.2 (4) H11B—C11—H11C 109.5
O4—C7—C6 115.0 (4) H6A—O6—H6B 105 (6)
C8—C7—C6 120.8 (4) H7A—O7—H7B 101.2
C9—C8—C7 118.9 (4)
C9—O1—C2—C1' −180.0 (4) C2—O1—C9—C8 155.2 (4)
C9—O1—C2—C3 54.2 (5) C2—O1—C9—C10 −26.6 (6)
O1—C2—C3—C4 −54.4 (5) C7—C8—C9—O1 −178.2 (4)
C1'—C2—C3—C4 −175.4 (4) C7—C8—C9—C10 3.6 (6)
C2—C3—C4—O2 −153.5 (5) C5—C10—C9—O1 179.7 (4)
C2—C3—C4—C10 28.6 (6) C4—C10—C9—O1 −1.7 (6)
O2—C4—C10—C9 −178.3 (4) C5—C10—C9—C8 −2.2 (6)
C3—C4—C10—C9 −0.5 (6) C4—C10—C9—C8 176.4 (4)
O2—C4—C10—C5 0.3 (7) O1—C2—C1'—C6' 112.6 (5)
C3—C4—C10—C5 178.0 (4) C3—C2—C1'—C6' −125.2 (5)
C9—C10—C5—O3 177.7 (4) O1—C2—C1'—C2' −66.1 (6)
C4—C10—C5—O3 −0.9 (7) C3—C2—C1'—C2' 56.1 (6)
C9—C10—C5—C6 −0.2 (6) C6'—C1'—C2'—C3' −0.3 (8)
C4—C10—C5—C6 −178.8 (4) C2—C1'—C2'—C3' 178.5 (5)
O3—C5—C6—C7 −176.9 (4) C1'—C2'—C3'—C4' 0.6 (8)
C10—C5—C6—C7 1.1 (7) C2'—C3'—C4'—O5 178.9 (5)
C11—O4—C7—C8 2.6 (7) C2'—C3'—C4'—C5' −0.6 (9)
C11—O4—C7—C6 −176.5 (4) O5—C4'—C5'—C6' −179.3 (5)
C5—C6—C7—O4 179.5 (4) C3'—C4'—C5'—C6' 0.2 (9)
C5—C6—C7—C8 0.4 (7) C2'—C1'—C6'—C5' −0.1 (8)
O4—C7—C8—C9 178.2 (4) C2—C1'—C6'—C5' −178.9 (5)
C6—C7—C8—C9 −2.7 (7) C4'—C5'—C6'—C1' 0.2 (9)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3···O2 0.82 1.90 2.630 (5) 147
O5—H5···O7 0.76 (9) 1.99 (9) 2.720 (7) 163 (7)
O6—H6A···O2i 0.87 (9) 2.00 (8) 2.847 (6) 166 (7)
O6—H6B···O3ii 0.81 (6) 2.11 (6) 2.915 (5) 174 (8)
O7—H7A···O5i 0.85 2.27 3.055 (7) 153
O7—H7B···O6iii 0.85 1.94 2.763 (6) 163

Symmetry codes: (i) x+1, y, z; (ii) −x, y+1/2, −z+1/2; (iii) x+1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2193).

References

  1. Agrawal, P. K. (1989). In Carbon-13 NMR of Flavonoids Amsterdam: Elsevier.
  2. Atkinson, P. & Blakeman, J. P. (1982). New Phytol. 92, 63–74.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Modak, B., Rojas, M. & Torres, R. (2009). Molecules, 14, 1980–1989. [DOI] [PMC free article] [PubMed]
  8. Narasimhachari, N. & Seshadri, T. R. (1949). Proc. Indian Acad. Sci. A 29, 265–268.
  9. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  10. Ogawa, Y., Oku, H., Iwaoka, E., Iinuma, M. & Ishiguro, K. (2007). Chem. Pharm. Bull. 55, 675–678. [DOI] [PubMed]
  11. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  12. Plowright, R. A., Grayer, R. J., Gill, J. R., Rahman, M. L. & Harborne, J. B. (1996). Nematologica, 42, 564–578.
  13. Saito, T., Abe, D. & Sekiya, K. (2008). Biochem. Biophys. Res. Commun. 372, 835–839. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Shoja, M. (1990). Acta Cryst. C46, 1969–1971.
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811051221/kj2193sup1.cif

e-68-00o32-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051221/kj2193Isup2.hkl

e-68-00o32-Isup2.hkl (97.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811051221/kj2193Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES