Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Dec 7;68(Pt 1):o34. doi: 10.1107/S1600536811051312

(5S)-5-Methyl-3-phenyl-2-sulfanyl­idene-1,3-thia­zolidin-4-one

Jun-Rong Jiang a,*, Feng Xu a, Zhong-Lu Ke a, Li Li a
PMCID: PMC3254396  PMID: 22259538

Abstract

In the title mol­ecule, C10H9NOS2, the 2-sulfanyl­idene­thia­zolidin-4-one mean plane and phenyl ring form a dihedral angle of 81.7 (1)°. In the crystal, C—H⋯π inter­actions link mol­ecules into helical chains in [010].

Related literature

For related structures, see: Gattow et al. (1983); Rang et al. (1997). For applications of 2-sulfanyl­idene­thia­zolidin-4-one derivatives, see: Zidar et al. (2010); Powers et al. (2006).graphic file with name e-68-00o34-scheme1.jpg

Experimental

Crystal data

  • C10H9NOS2

  • M r = 223.30

  • Orthorhombic, Inline graphic

  • a = 6.8527 (4) Å

  • b = 8.6643 (5) Å

  • c = 17.5572 (15) Å

  • V = 1042.44 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 153 K

  • 0.30 × 0.20 × 0.18 mm

Data collection

  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2008) T min = 0.872, T max = 0.919

  • 9028 measured reflections

  • 2777 independent reflections

  • 2561 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.064

  • S = 1.00

  • 2777 reflections

  • 128 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983), 1155 Friedel pairs

  • Flack parameter: −0.01 (6)

Data collection: CrystalClear (Rigaku/MSC, 2008); cell refinement: CrystalClear; data reduction: CrystalClear ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811051312/cv5203sup1.cif

e-68-00o34-sup1.cif (15.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051312/cv5203Isup2.hkl

e-68-00o34-Isup2.hkl (136.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811051312/cv5203Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cgi 1.00 2.47 3.4321 (16) 162

Symmetry code: (i) Inline graphic.

Acknowledgments

We are very grateful to the Foundation of Taizhou Vocational and Technical College (grant No. 2010ZD09) for financial support.

supplementary crystallographic information

Comment

2-sulfanylidenethiazolidin-4-one derivatives are known as compounds with potential antifungal activities (Zidar et al., 2010) and potential drugs-inhibitors of the HCV-RNA polymerase (Powers et al., 2006). Herewith we present the title compound (I), which is a new 2-sulfanylidenethiazolidin-4-one derivative.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related compounds 3-(S)-(1-phenylethyl)-5-methyl-2-sulfanylidenethiazolidin-4-one (Rang et al., 1997) and 5-methyl-2-sulfanylidenethiazolidin-4-one (Gattow et al., 1983). The 2-sulfanylidenethiazolidin-4-one and phenyl rings form a dihedral angle of 81.7 (1)°. In the crystal structure, intermolecular C—H···π interactions (Table 1) link molecules into helical chains in [010].

Experimental

To 54 ml of concentrated ammonia in an ice-salt bath was added 13.95 g(0.15 mol) of benzylamine. carbon bisulfide 19.5 ml(24.6 g,0.323 mol) was added dropwise over a period 2 h and stirring continued for 4 h.The dithiocarbamate precipitated was allowed to stand overnight. It was filtered(warning:filtered to be immediately used), washed with cold ether and dried by suction. The sodium 2-bromopropionate solution was prepared by 15.3 g(0.1 mol) of 2-bromopropionic acid in 9 ml of water and 3.5 g(0.0875 mol)of sodium hydroxide in 6 ml of water,and adding saturated NaHCO3 solution until the solution was basic.The sodium 2-bromopropionate solution was stirred, cooled to 273 K and the dithiocarbamate added by batch about 10 min.After the mixture was stirred for 1 h at the same condition,it was allowed to warm up to r.t. and stand 30 min.Then a hot solution of concentrated HCl plus water(40 ml+27 ml)was added to it.The mixture was boiled for 10 min and cooled to r.t.The precipitate was filtered, washed with cold water and little cold ethanol.The crude product was recrystallized from ethanol to yield 13.6 g(61%) yellow needle-like compounds.

Refinement

H atoms were placed in calculated positions [C—H = 0.95-1.00 Å] and refined in riding mode, with Uiso(H) = 1.2-1.5 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), shown with 30% probability displacement ellipsoids.

Crystal data

C10H9NOS2 F(000) = 464
Mr = 223.30 Dx = 1.423 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 3919 reflections
a = 6.8527 (4) Å θ = 2.3–29.1°
b = 8.6643 (5) Å µ = 0.48 mm1
c = 17.5572 (15) Å T = 153 K
V = 1042.44 (12) Å3 Block, colorless
Z = 4 0.30 × 0.20 × 0.18 mm

Data collection

Rigaku AFC10/Saturn724+ diffractometer 2777 independent reflections
Radiation source: fine-focus sealed tube 2561 reflections with I > 2σ(I)
graphite Rint = 0.029
Detector resolution: 28.5714 pixels mm-1 θmax = 29.1°, θmin = 2.6°
phi and ω scans h = −9→9
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2008) k = −11→10
Tmin = 0.872, Tmax = 0.919 l = −23→22
9028 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028 H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.086P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.014
2777 reflections Δρmax = 0.30 e Å3
128 parameters Δρmin = −0.17 e Å3
1 restraint Absolute structure: Flack (1983), 1155 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.01 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.11471 (5) 0.55991 (4) 0.42516 (2) 0.02375 (9)
S2 0.13997 (6) 0.70725 (4) 0.57733 (2) 0.02665 (10)
O1 0.53389 (18) 0.27885 (14) 0.46834 (6) 0.0334 (3)
N3 0.36082 (17) 0.47158 (13) 0.52694 (6) 0.0177 (2)
C2 0.2145 (2) 0.57762 (16) 0.51556 (8) 0.0186 (3)
C4 0.4056 (2) 0.37374 (17) 0.46629 (8) 0.0212 (3)
C5 0.2751 (2) 0.40173 (16) 0.39840 (8) 0.0204 (3)
H5 0.1937 0.3075 0.3899 0.025*
C6 0.3913 (2) 0.4338 (2) 0.32607 (8) 0.0285 (3)
H6A 0.4889 0.3525 0.3188 0.034*
H6B 0.4569 0.5339 0.3306 0.034*
H6C 0.3027 0.4357 0.2823 0.034*
C7 0.4603 (2) 0.45370 (16) 0.59871 (7) 0.0184 (3)
C8 0.3715 (2) 0.36714 (18) 0.65529 (8) 0.0246 (3)
H8 0.2451 0.3249 0.6476 0.030*
C9 0.4698 (3) 0.34305 (19) 0.72335 (9) 0.0285 (4)
H9 0.4112 0.2829 0.7624 0.034*
C10 0.6522 (2) 0.40624 (18) 0.73445 (8) 0.0280 (3)
H10 0.7178 0.3909 0.7815 0.034*
C11 0.7409 (2) 0.4923 (2) 0.67723 (9) 0.0274 (3)
H11 0.8671 0.5348 0.6852 0.033*
C12 0.6448 (2) 0.51620 (16) 0.60833 (8) 0.0226 (3)
H12 0.7045 0.5742 0.5687 0.027*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.02356 (17) 0.02662 (18) 0.02108 (17) 0.00623 (15) −0.00460 (16) −0.00175 (15)
S2 0.02865 (19) 0.02565 (18) 0.02565 (19) 0.00662 (16) 0.00106 (18) −0.00678 (16)
O1 0.0377 (7) 0.0365 (7) 0.0259 (6) 0.0192 (6) −0.0044 (5) −0.0058 (5)
N3 0.0179 (5) 0.0197 (5) 0.0155 (5) 0.0002 (5) −0.0008 (5) −0.0004 (4)
C2 0.0180 (6) 0.0183 (6) 0.0194 (6) −0.0016 (5) 0.0012 (5) 0.0008 (5)
C4 0.0225 (8) 0.0226 (7) 0.0186 (7) 0.0013 (6) 0.0004 (6) −0.0003 (6)
C5 0.0230 (7) 0.0198 (7) 0.0186 (6) 0.0002 (6) −0.0007 (6) −0.0027 (6)
C6 0.0301 (8) 0.0347 (8) 0.0208 (7) 0.0031 (8) 0.0021 (6) 0.0006 (7)
C7 0.0216 (6) 0.0182 (7) 0.0154 (6) 0.0014 (5) −0.0005 (5) −0.0012 (5)
C8 0.0227 (7) 0.0286 (7) 0.0227 (7) −0.0028 (7) 0.0021 (6) −0.0003 (6)
C9 0.0374 (9) 0.0291 (8) 0.0189 (7) −0.0009 (7) 0.0043 (7) 0.0031 (6)
C10 0.0355 (9) 0.0292 (8) 0.0193 (7) 0.0057 (7) −0.0065 (7) −0.0017 (6)
C11 0.0254 (7) 0.0281 (8) 0.0286 (8) −0.0028 (6) −0.0078 (6) −0.0007 (6)
C12 0.0243 (7) 0.0205 (6) 0.0231 (7) −0.0025 (6) −0.0008 (6) 0.0023 (6)

Geometric parameters (Å, °)

S1—C2 1.7350 (14) C6—H6C 0.9800
S1—C5 1.8184 (15) C7—C12 1.3856 (19)
S2—C2 1.6427 (14) C7—C8 1.386 (2)
O1—C4 1.2043 (17) C8—C9 1.387 (2)
N3—C2 1.3746 (17) C8—H8 0.9500
N3—C4 1.3951 (18) C9—C10 1.379 (2)
N3—C7 1.4412 (17) C9—H9 0.9500
C4—C5 1.510 (2) C10—C11 1.391 (2)
C5—C6 1.5245 (19) C10—H10 0.9500
C5—H5 1.0000 C11—C12 1.393 (2)
C6—H6A 0.9800 C11—H11 0.9500
C6—H6B 0.9800 C12—H12 0.9500
C2—S1—C5 93.72 (7) H6A—C6—H6C 109.5
C2—N3—C4 117.10 (11) H6B—C6—H6C 109.5
C2—N3—C7 122.96 (11) C12—C7—C8 121.67 (13)
C4—N3—C7 119.87 (12) C12—C7—N3 119.76 (12)
N3—C2—S2 126.00 (10) C8—C7—N3 118.49 (13)
N3—C2—S1 111.18 (10) C7—C8—C9 119.05 (15)
S2—C2—S1 122.82 (9) C7—C8—H8 120.5
O1—C4—N3 123.54 (13) C9—C8—H8 120.5
O1—C4—C5 124.46 (13) C10—C9—C8 120.14 (15)
N3—C4—C5 112.01 (12) C10—C9—H9 119.9
C4—C5—C6 112.18 (12) C8—C9—H9 119.9
C4—C5—S1 105.97 (10) C9—C10—C11 120.47 (14)
C6—C5—S1 113.16 (10) C9—C10—H10 119.8
C4—C5—H5 108.5 C11—C10—H10 119.8
C6—C5—H5 108.5 C10—C11—C12 120.01 (15)
S1—C5—H5 108.5 C10—C11—H11 120.0
C5—C6—H6A 109.5 C12—C11—H11 120.0
C5—C6—H6B 109.5 C7—C12—C11 118.64 (14)
H6A—C6—H6B 109.5 C7—C12—H12 120.7
C5—C6—H6C 109.5 C11—C12—H12 120.7
C4—N3—C2—S2 −178.34 (11) C2—S1—C5—C4 −0.78 (10)
C7—N3—C2—S2 4.66 (19) C2—S1—C5—C6 −124.12 (11)
C4—N3—C2—S1 1.17 (15) C2—N3—C7—C12 −102.04 (16)
C7—N3—C2—S1 −175.83 (10) C4—N3—C7—C12 81.04 (17)
C5—S1—C2—N3 −0.14 (11) C2—N3—C7—C8 81.10 (18)
C5—S1—C2—S2 179.39 (9) C4—N3—C7—C8 −95.83 (16)
C2—N3—C4—O1 177.98 (14) C12—C7—C8—C9 0.2 (2)
C7—N3—C4—O1 −4.9 (2) N3—C7—C8—C9 177.02 (13)
C2—N3—C4—C5 −1.81 (17) C7—C8—C9—C10 0.8 (2)
C7—N3—C4—C5 175.29 (12) C8—C9—C10—C11 −1.1 (2)
O1—C4—C5—C6 −54.3 (2) C9—C10—C11—C12 0.5 (2)
N3—C4—C5—C6 125.48 (13) C8—C7—C12—C11 −0.8 (2)
O1—C4—C5—S1 −178.26 (13) N3—C7—C12—C11 −177.60 (13)
N3—C4—C5—S1 1.53 (14) C10—C11—C12—C7 0.5 (2)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C7–C12 ring.
D—H···A D—H H···A D···A D—H···A
C5—H5···Cgi 1.00 2.47 3.4321 (16) 162

Symmetry codes: (i) x−1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5203).

References

  1. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  2. Gattow, G., Kiel, G. & Rach, W. (1983). Z. Anorg. Allg. Chem. 506, 145-152.
  3. Powers, J. P., Piper, D. E., Li, Y., Mayorga, V., Anzola, J., Chen, J. M., Jaen, J. C., Lee, G., Liu, J., Peterson, M. G., Tonn, G. R., Ye, Q., Walker, N. P. & Wang, Z. (2006). J. Med. Chem. 49,1034–1046. [DOI] [PubMed]
  4. Rang, K., Liao, F. L., Sandstorm, J. & Wang, S. L. (1997). Chirality, 9, 568-577.
  5. Rigaku/MSC (2008). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Zidar, N., Tomašić, T., Šink, R., Rupnik, V., Kovač, A., Turk, S., Patin, D., Blanot, D., Martel, C. C., Dessen, A., Müller-Premru, M., Zega, A., Gobec, S., Mašić, L. P. & Kikelj, D. (2010). J. Med. Chem. 53, 6584-6594. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811051312/cv5203sup1.cif

e-68-00o34-sup1.cif (15.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051312/cv5203Isup2.hkl

e-68-00o34-Isup2.hkl (136.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811051312/cv5203Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES