Abstract
In the title molecule, C10H9NOS2, the 2-sulfanylidenethiazolidin-4-one mean plane and phenyl ring form a dihedral angle of 81.7 (1)°. In the crystal, C—H⋯π interactions link molecules into helical chains in [010].
Related literature
For related structures, see: Gattow et al. (1983 ▶); Rang et al. (1997 ▶). For applications of 2-sulfanylidenethiazolidin-4-one derivatives, see: Zidar et al. (2010 ▶); Powers et al. (2006 ▶).
Experimental
Crystal data
C10H9NOS2
M r = 223.30
Orthorhombic,
a = 6.8527 (4) Å
b = 8.6643 (5) Å
c = 17.5572 (15) Å
V = 1042.44 (12) Å3
Z = 4
Mo Kα radiation
μ = 0.48 mm−1
T = 153 K
0.30 × 0.20 × 0.18 mm
Data collection
Rigaku AFC10/Saturn724+ diffractometer
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2008 ▶) T min = 0.872, T max = 0.919
9028 measured reflections
2777 independent reflections
2561 reflections with I > 2σ(I)
R int = 0.029
Refinement
R[F 2 > 2σ(F 2)] = 0.028
wR(F 2) = 0.064
S = 1.00
2777 reflections
128 parameters
1 restraint
H-atom parameters constrained
Δρmax = 0.30 e Å−3
Δρmin = −0.17 e Å−3
Absolute structure: Flack (1983 ▶), 1155 Friedel pairs
Flack parameter: −0.01 (6)
Data collection: CrystalClear (Rigaku/MSC, 2008 ▶); cell refinement: CrystalClear; data reduction: CrystalClear ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: PLATON (Spek, 2009 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811051312/cv5203sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051312/cv5203Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536811051312/cv5203Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
Cg is the centroid of the C7–C12 ring.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C5—H5⋯Cgi | 1.00 | 2.47 | 3.4321 (16) | 162 |
Symmetry code: (i)
.
Acknowledgments
We are very grateful to the Foundation of Taizhou Vocational and Technical College (grant No. 2010ZD09) for financial support.
supplementary crystallographic information
Comment
2-sulfanylidenethiazolidin-4-one derivatives are known as compounds with potential antifungal activities (Zidar et al., 2010) and potential drugs-inhibitors of the HCV-RNA polymerase (Powers et al., 2006). Herewith we present the title compound (I), which is a new 2-sulfanylidenethiazolidin-4-one derivative.
In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related compounds 3-(S)-(1-phenylethyl)-5-methyl-2-sulfanylidenethiazolidin-4-one (Rang et al., 1997) and 5-methyl-2-sulfanylidenethiazolidin-4-one (Gattow et al., 1983). The 2-sulfanylidenethiazolidin-4-one and phenyl rings form a dihedral angle of 81.7 (1)°. In the crystal structure, intermolecular C—H···π interactions (Table 1) link molecules into helical chains in [010].
Experimental
To 54 ml of concentrated ammonia in an ice-salt bath was added 13.95 g(0.15 mol) of benzylamine. carbon bisulfide 19.5 ml(24.6 g,0.323 mol) was added dropwise over a period 2 h and stirring continued for 4 h.The dithiocarbamate precipitated was allowed to stand overnight. It was filtered(warning:filtered to be immediately used), washed with cold ether and dried by suction. The sodium 2-bromopropionate solution was prepared by 15.3 g(0.1 mol) of 2-bromopropionic acid in 9 ml of water and 3.5 g(0.0875 mol)of sodium hydroxide in 6 ml of water,and adding saturated NaHCO3 solution until the solution was basic.The sodium 2-bromopropionate solution was stirred, cooled to 273 K and the dithiocarbamate added by batch about 10 min.After the mixture was stirred for 1 h at the same condition,it was allowed to warm up to r.t. and stand 30 min.Then a hot solution of concentrated HCl plus water(40 ml+27 ml)was added to it.The mixture was boiled for 10 min and cooled to r.t.The precipitate was filtered, washed with cold water and little cold ethanol.The crude product was recrystallized from ethanol to yield 13.6 g(61%) yellow needle-like compounds.
Refinement
H atoms were placed in calculated positions [C—H = 0.95-1.00 Å] and refined in riding mode, with Uiso(H) = 1.2-1.5 Ueq(C).
Figures
Fig. 1.
The molecular structure of (I), shown with 30% probability displacement ellipsoids.
Crystal data
| C10H9NOS2 | F(000) = 464 |
| Mr = 223.30 | Dx = 1.423 Mg m−3 |
| Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: P 2ac 2ab | Cell parameters from 3919 reflections |
| a = 6.8527 (4) Å | θ = 2.3–29.1° |
| b = 8.6643 (5) Å | µ = 0.48 mm−1 |
| c = 17.5572 (15) Å | T = 153 K |
| V = 1042.44 (12) Å3 | Block, colorless |
| Z = 4 | 0.30 × 0.20 × 0.18 mm |
Data collection
| Rigaku AFC10/Saturn724+ diffractometer | 2777 independent reflections |
| Radiation source: fine-focus sealed tube | 2561 reflections with I > 2σ(I) |
| graphite | Rint = 0.029 |
| Detector resolution: 28.5714 pixels mm-1 | θmax = 29.1°, θmin = 2.6° |
| phi and ω scans | h = −9→9 |
| Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2008) | k = −11→10 |
| Tmin = 0.872, Tmax = 0.919 | l = −23→22 |
| 9028 measured reflections |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
| wR(F2) = 0.064 | w = 1/[σ2(Fo2) + (0.0326P)2 + 0.086P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.00 | (Δ/σ)max = 0.014 |
| 2777 reflections | Δρmax = 0.30 e Å−3 |
| 128 parameters | Δρmin = −0.17 e Å−3 |
| 1 restraint | Absolute structure: Flack (1983), 1155 Friedel pairs |
| Primary atom site location: structure-invariant direct methods | Flack parameter: −0.01 (6) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S1 | 0.11471 (5) | 0.55991 (4) | 0.42516 (2) | 0.02375 (9) | |
| S2 | 0.13997 (6) | 0.70725 (4) | 0.57733 (2) | 0.02665 (10) | |
| O1 | 0.53389 (18) | 0.27885 (14) | 0.46834 (6) | 0.0334 (3) | |
| N3 | 0.36082 (17) | 0.47158 (13) | 0.52694 (6) | 0.0177 (2) | |
| C2 | 0.2145 (2) | 0.57762 (16) | 0.51556 (8) | 0.0186 (3) | |
| C4 | 0.4056 (2) | 0.37374 (17) | 0.46629 (8) | 0.0212 (3) | |
| C5 | 0.2751 (2) | 0.40173 (16) | 0.39840 (8) | 0.0204 (3) | |
| H5 | 0.1937 | 0.3075 | 0.3899 | 0.025* | |
| C6 | 0.3913 (2) | 0.4338 (2) | 0.32607 (8) | 0.0285 (3) | |
| H6A | 0.4889 | 0.3525 | 0.3188 | 0.034* | |
| H6B | 0.4569 | 0.5339 | 0.3306 | 0.034* | |
| H6C | 0.3027 | 0.4357 | 0.2823 | 0.034* | |
| C7 | 0.4603 (2) | 0.45370 (16) | 0.59871 (7) | 0.0184 (3) | |
| C8 | 0.3715 (2) | 0.36714 (18) | 0.65529 (8) | 0.0246 (3) | |
| H8 | 0.2451 | 0.3249 | 0.6476 | 0.030* | |
| C9 | 0.4698 (3) | 0.34305 (19) | 0.72335 (9) | 0.0285 (4) | |
| H9 | 0.4112 | 0.2829 | 0.7624 | 0.034* | |
| C10 | 0.6522 (2) | 0.40624 (18) | 0.73445 (8) | 0.0280 (3) | |
| H10 | 0.7178 | 0.3909 | 0.7815 | 0.034* | |
| C11 | 0.7409 (2) | 0.4923 (2) | 0.67723 (9) | 0.0274 (3) | |
| H11 | 0.8671 | 0.5348 | 0.6852 | 0.033* | |
| C12 | 0.6448 (2) | 0.51620 (16) | 0.60833 (8) | 0.0226 (3) | |
| H12 | 0.7045 | 0.5742 | 0.5687 | 0.027* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1 | 0.02356 (17) | 0.02662 (18) | 0.02108 (17) | 0.00623 (15) | −0.00460 (16) | −0.00175 (15) |
| S2 | 0.02865 (19) | 0.02565 (18) | 0.02565 (19) | 0.00662 (16) | 0.00106 (18) | −0.00678 (16) |
| O1 | 0.0377 (7) | 0.0365 (7) | 0.0259 (6) | 0.0192 (6) | −0.0044 (5) | −0.0058 (5) |
| N3 | 0.0179 (5) | 0.0197 (5) | 0.0155 (5) | 0.0002 (5) | −0.0008 (5) | −0.0004 (4) |
| C2 | 0.0180 (6) | 0.0183 (6) | 0.0194 (6) | −0.0016 (5) | 0.0012 (5) | 0.0008 (5) |
| C4 | 0.0225 (8) | 0.0226 (7) | 0.0186 (7) | 0.0013 (6) | 0.0004 (6) | −0.0003 (6) |
| C5 | 0.0230 (7) | 0.0198 (7) | 0.0186 (6) | 0.0002 (6) | −0.0007 (6) | −0.0027 (6) |
| C6 | 0.0301 (8) | 0.0347 (8) | 0.0208 (7) | 0.0031 (8) | 0.0021 (6) | 0.0006 (7) |
| C7 | 0.0216 (6) | 0.0182 (7) | 0.0154 (6) | 0.0014 (5) | −0.0005 (5) | −0.0012 (5) |
| C8 | 0.0227 (7) | 0.0286 (7) | 0.0227 (7) | −0.0028 (7) | 0.0021 (6) | −0.0003 (6) |
| C9 | 0.0374 (9) | 0.0291 (8) | 0.0189 (7) | −0.0009 (7) | 0.0043 (7) | 0.0031 (6) |
| C10 | 0.0355 (9) | 0.0292 (8) | 0.0193 (7) | 0.0057 (7) | −0.0065 (7) | −0.0017 (6) |
| C11 | 0.0254 (7) | 0.0281 (8) | 0.0286 (8) | −0.0028 (6) | −0.0078 (6) | −0.0007 (6) |
| C12 | 0.0243 (7) | 0.0205 (6) | 0.0231 (7) | −0.0025 (6) | −0.0008 (6) | 0.0023 (6) |
Geometric parameters (Å, °)
| S1—C2 | 1.7350 (14) | C6—H6C | 0.9800 |
| S1—C5 | 1.8184 (15) | C7—C12 | 1.3856 (19) |
| S2—C2 | 1.6427 (14) | C7—C8 | 1.386 (2) |
| O1—C4 | 1.2043 (17) | C8—C9 | 1.387 (2) |
| N3—C2 | 1.3746 (17) | C8—H8 | 0.9500 |
| N3—C4 | 1.3951 (18) | C9—C10 | 1.379 (2) |
| N3—C7 | 1.4412 (17) | C9—H9 | 0.9500 |
| C4—C5 | 1.510 (2) | C10—C11 | 1.391 (2) |
| C5—C6 | 1.5245 (19) | C10—H10 | 0.9500 |
| C5—H5 | 1.0000 | C11—C12 | 1.393 (2) |
| C6—H6A | 0.9800 | C11—H11 | 0.9500 |
| C6—H6B | 0.9800 | C12—H12 | 0.9500 |
| C2—S1—C5 | 93.72 (7) | H6A—C6—H6C | 109.5 |
| C2—N3—C4 | 117.10 (11) | H6B—C6—H6C | 109.5 |
| C2—N3—C7 | 122.96 (11) | C12—C7—C8 | 121.67 (13) |
| C4—N3—C7 | 119.87 (12) | C12—C7—N3 | 119.76 (12) |
| N3—C2—S2 | 126.00 (10) | C8—C7—N3 | 118.49 (13) |
| N3—C2—S1 | 111.18 (10) | C7—C8—C9 | 119.05 (15) |
| S2—C2—S1 | 122.82 (9) | C7—C8—H8 | 120.5 |
| O1—C4—N3 | 123.54 (13) | C9—C8—H8 | 120.5 |
| O1—C4—C5 | 124.46 (13) | C10—C9—C8 | 120.14 (15) |
| N3—C4—C5 | 112.01 (12) | C10—C9—H9 | 119.9 |
| C4—C5—C6 | 112.18 (12) | C8—C9—H9 | 119.9 |
| C4—C5—S1 | 105.97 (10) | C9—C10—C11 | 120.47 (14) |
| C6—C5—S1 | 113.16 (10) | C9—C10—H10 | 119.8 |
| C4—C5—H5 | 108.5 | C11—C10—H10 | 119.8 |
| C6—C5—H5 | 108.5 | C10—C11—C12 | 120.01 (15) |
| S1—C5—H5 | 108.5 | C10—C11—H11 | 120.0 |
| C5—C6—H6A | 109.5 | C12—C11—H11 | 120.0 |
| C5—C6—H6B | 109.5 | C7—C12—C11 | 118.64 (14) |
| H6A—C6—H6B | 109.5 | C7—C12—H12 | 120.7 |
| C5—C6—H6C | 109.5 | C11—C12—H12 | 120.7 |
| C4—N3—C2—S2 | −178.34 (11) | C2—S1—C5—C4 | −0.78 (10) |
| C7—N3—C2—S2 | 4.66 (19) | C2—S1—C5—C6 | −124.12 (11) |
| C4—N3—C2—S1 | 1.17 (15) | C2—N3—C7—C12 | −102.04 (16) |
| C7—N3—C2—S1 | −175.83 (10) | C4—N3—C7—C12 | 81.04 (17) |
| C5—S1—C2—N3 | −0.14 (11) | C2—N3—C7—C8 | 81.10 (18) |
| C5—S1—C2—S2 | 179.39 (9) | C4—N3—C7—C8 | −95.83 (16) |
| C2—N3—C4—O1 | 177.98 (14) | C12—C7—C8—C9 | 0.2 (2) |
| C7—N3—C4—O1 | −4.9 (2) | N3—C7—C8—C9 | 177.02 (13) |
| C2—N3—C4—C5 | −1.81 (17) | C7—C8—C9—C10 | 0.8 (2) |
| C7—N3—C4—C5 | 175.29 (12) | C8—C9—C10—C11 | −1.1 (2) |
| O1—C4—C5—C6 | −54.3 (2) | C9—C10—C11—C12 | 0.5 (2) |
| N3—C4—C5—C6 | 125.48 (13) | C8—C7—C12—C11 | −0.8 (2) |
| O1—C4—C5—S1 | −178.26 (13) | N3—C7—C12—C11 | −177.60 (13) |
| N3—C4—C5—S1 | 1.53 (14) | C10—C11—C12—C7 | 0.5 (2) |
Hydrogen-bond geometry (Å, °)
| Cg is the centroid of the C7–C12 ring. |
| D—H···A | D—H | H···A | D···A | D—H···A |
| C5—H5···Cgi | 1.00 | 2.47 | 3.4321 (16) | 162 |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5203).
References
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Gattow, G., Kiel, G. & Rach, W. (1983). Z. Anorg. Allg. Chem. 506, 145-152.
- Powers, J. P., Piper, D. E., Li, Y., Mayorga, V., Anzola, J., Chen, J. M., Jaen, J. C., Lee, G., Liu, J., Peterson, M. G., Tonn, G. R., Ye, Q., Walker, N. P. & Wang, Z. (2006). J. Med. Chem. 49,1034–1046. [DOI] [PubMed]
- Rang, K., Liao, F. L., Sandstorm, J. & Wang, S. L. (1997). Chirality, 9, 568-577.
- Rigaku/MSC (2008). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Zidar, N., Tomašić, T., Šink, R., Rupnik, V., Kovač, A., Turk, S., Patin, D., Blanot, D., Martel, C. C., Dessen, A., Müller-Premru, M., Zega, A., Gobec, S., Mašić, L. P. & Kikelj, D. (2010). J. Med. Chem. 53, 6584-6594. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811051312/cv5203sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051312/cv5203Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536811051312/cv5203Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

