Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Dec 7;68(Pt 1):o35–o36. doi: 10.1107/S1600536811051269

2-Bromo-4-(3,4-dimethyl-5-phenyl-1,3-oxazolidin-2-yl)-6-meth­oxy­phenol

Maywan Hariono a, Nurziana Ngah b, Habibah A Wahab a, Aisyah Saad Abdul Rahim a,*
PMCID: PMC3254397  PMID: 22259539

Abstract

In the title compound, C18H20BrNO3, the oxazolidine ring adopts an envelope conformation with the N atom at the flap position. The mean plane of oxazolidine ring makes dihedral angles of 82.96 (13) and 70.97 (12)°, respectively, with the phenyl and benzene rings. In the crystal, adjacent mol­ecules are connected via O—H⋯O and C—H⋯O hydrogen bonds and C—H⋯π inter­actions into a zigzag chain along the b axis.

Related literature

For the synthesis and closely related structures, see: Asaruddin et al. (2010); Diwischeck et al. (2003); Khruscheva et al. (1997); Duffy et al. (2004). For therapeutic properties of oxazolidine derivatives, see: Moloney et al. (1998); Wang et al. (2010); Nakano et al. (2010); Fülöp et al. (2004); Panneerselvam (2011). For standard bond lengths, see: Allen et al. (1987). For the low-temperature device used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-00o35-scheme1.jpg

Experimental

Crystal data

  • C18H20BrNO3

  • M r = 378.26

  • Orthorhombic, Inline graphic

  • a = 7.8056 (4) Å

  • b = 11.9034 (6) Å

  • c = 18.9109 (9) Å

  • V = 1757.07 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.35 mm−1

  • T = 100 K

  • 0.50 × 0.36 × 0.23 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.383, T max = 0.618

  • 10569 measured reflections

  • 3074 independent reflections

  • 2935 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.056

  • S = 1.08

  • 3074 reflections

  • 215 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983), 1283 Friedel pairs

  • Flack parameter: 0.004 (7)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811051269/is5016sup1.cif

e-68-00o35-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051269/is5016Isup2.hkl

e-68-00o35-Isup2.hkl (150.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811051269/is5016Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.85 (1) 2.03 (1) 2.7853 (19) 148 (2)
C15—H15A⋯O2ii 0.95 2.46 3.232 (3) 138
C18—H18ACg2i 0.98 2.96 3.679 (3) 131

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

MH, HAW and ASAR acknowledge the Malaysia Ministry of Science, Technology and Innovations (MOSTI) for funding the synthetic chemistry work under the R&D initiative grant Nos. 09-05-lfn-meb-004 and 304/PFARMASI/650544/I121. MH thanks Universiti Sains Malaysia for the award of a postgraduate fellowship.

supplementary crystallographic information

Comment

Oxazolidine compounds are important in understanding drug behaviour in medicinal chemistry (Duffy et al., 2004). Derivatives of oxazolidine have shown inhibitory effects for several diseases or condition such as β-adrenoreseptor antagonist (Moloney et al., 1998), influenza antiviral (Wang et al., 2010; Nakano et al., 2010), antinflammatory agents (Fulop et al., 2004) and antihyperglycemic (Panneerselvam, 2011). In this paper, we report the X-ray crystal structure of the title oxazolidine compound, (I).

The title compound, C18H20BrNO3, consists of two aromatic rings which are connected through oxazolidine ring (Fig. 1). The molecule is similar with those reported by Asaruddin et al. (2010), in that only the present of Br atom at β position of 3-hydroxy-4-methoxyphenyl ring is different. The oxazolidine ring (O1/C7–C9/N1) adopts an envelope conformation with puckering parameters of Q = 0.433 (2) Å and φ = 107.3 (3)°. The N1 atom is at the flap position and it deviates from the mean plane through the remaining four atoms by 0.651 (2) Å. The C1–C6 phenyl and C10–C15 benzene rings make dihedral angles of 82.96 (13) and 70.97 (12)°, respectively, with the mean plane of oxazolidine ring. The bond lengths and angles are in normal ranges (Allen et al., 1987) and in agreement with those reported by Asaruddin et al. (2010).

In the crystal structure, adjacent molecules are connected via intermolecular O2—H2···O1 and C15—H15A···O2 hydrogen bonds and C18—H18A···Cg2 interactions (Table 1) to form a chain along the [010] direction; Cg2 is the centroid of the C1–C6 ring.

Experimental

Following a modified method (Asaruddin et al., 2010; Diwischeck et al., 2003; Khruscheva et al., 1997), (1S,2S)-2-methylamino-1-phenylpropan-1-ol (0.17 g, 1 mmol) was mixed with 3-bromo-4-hydroxy-5-methoxybenzaldehyde (0.23 g, 1 mmol) in a two-round neck bottom flask. The mixture was dissolved in methanol (4 ml) and molecular sieve 4Å (0.1 g) was added to the reaction mixture then the solution was refluxed at 333 K for 6 h. The solution was filtered and the solvent was evaporated in vacuo to give a crude product which was then recrystallized three times from methanol to give colourless blocks with a yield 11%. These were washed with n-hexane and dried overnight to afford single crystals suitable for X-ray analysis.

Refinement

X-ray data were collected at 100 K (Cosier & Glazer, 1986). The hydroxyl H atom was located in a difference map and refined freely [O2—H2 = 0.8499 (10) Å]. Other H atoms were positioned geometrically and refined using riding model with C—H = 0.95–1.00 Å and Uiso(H)=1.2 or 1.5Ueq(C). A rotating group model was applied for methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The molecular packing of the title compound viewed down the a axis.

Crystal data

C18H20BrNO3 F(000) = 776
Mr = 378.26 Dx = 1.430 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 8965 reflections
a = 7.8056 (4) Å θ = 2.0–24.9°
b = 11.9034 (6) Å µ = 2.35 mm1
c = 18.9109 (9) Å T = 100 K
V = 1757.07 (15) Å3 Block, colourless
Z = 4 0.50 × 0.36 × 0.23 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3074 independent reflections
Radiation source: fine-focus sealed tube 2935 reflections with I > 2σ(I)
graphite Rint = 0.037
Detector resolution: 83.66 pixels mm-1 θmax = 24.9°, θmin = 2.0°
φ and ω scan h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −14→14
Tmin = 0.383, Tmax = 0.618 l = −22→22
10569 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0197P)2] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
3074 reflections Δρmax = 0.32 e Å3
215 parameters Δρmin = −0.26 e Å3
1 restraint Absolute structure: Flack (1983), 1283 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.004 (7)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open=flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.58037 (3) 0.865565 (17) 0.942297 (10) 0.02402 (8)
O1 0.2217 (2) 0.40943 (12) 0.84900 (7) 0.0161 (3)
O2 0.6507 (2) 0.85865 (13) 0.78478 (7) 0.0187 (3)
O3 0.5513 (2) 0.71024 (11) 0.68917 (7) 0.0195 (3)
N1 0.0154 (3) 0.54199 (15) 0.83295 (9) 0.0179 (4)
C1 0.0051 (3) 0.1430 (2) 0.85221 (12) 0.0259 (5)
H1A −0.0140 0.1381 0.8027 0.031*
C2 −0.0108 (4) 0.0473 (2) 0.89404 (16) 0.0362 (7)
H2A −0.0416 −0.0224 0.8732 0.043*
C3 0.0182 (4) 0.0542 (2) 0.96587 (14) 0.0365 (7)
H3A 0.0072 −0.0110 0.9944 0.044*
C4 0.0633 (4) 0.1557 (2) 0.99672 (12) 0.0341 (6)
H4A 0.0831 0.1600 1.0462 0.041*
C5 0.0792 (4) 0.25110 (19) 0.95494 (11) 0.0257 (5)
H5A 0.1110 0.3205 0.9760 0.031*
C6 0.0490 (3) 0.24580 (18) 0.88251 (10) 0.0191 (5)
C7 0.0610 (3) 0.34994 (17) 0.83700 (10) 0.0170 (5)
H7A 0.0563 0.3265 0.7862 0.020*
C8 0.1793 (3) 0.52295 (17) 0.86771 (10) 0.0165 (5)
H8A 0.1630 0.5277 0.9201 0.020*
C9 −0.0781 (3) 0.43775 (18) 0.84969 (10) 0.0191 (5)
H9A −0.1098 0.4379 0.9009 0.023*
C10 0.3140 (3) 0.60567 (17) 0.84574 (10) 0.0152 (5)
C11 0.3775 (3) 0.68157 (17) 0.89478 (11) 0.0167 (5)
H11A 0.3434 0.6764 0.9429 0.020*
C12 0.4899 (3) 0.76443 (18) 0.87389 (10) 0.0162 (5)
C13 0.5436 (3) 0.77558 (17) 0.80434 (10) 0.0153 (4)
C14 0.4837 (3) 0.69524 (17) 0.75520 (10) 0.0149 (4)
C15 0.3686 (3) 0.61278 (17) 0.77486 (10) 0.0153 (4)
H15A 0.3264 0.5611 0.7407 0.018*
C16 −0.2384 (3) 0.4204 (2) 0.80546 (13) 0.0302 (6)
H16A −0.3266 0.4741 0.8202 0.045*
H16B −0.2808 0.3437 0.8122 0.045*
H16C −0.2112 0.4324 0.7554 0.045*
C17 −0.0712 (3) 0.64373 (18) 0.85614 (11) 0.0258 (5)
H17A 0.0013 0.7090 0.8461 0.039*
H17B −0.0931 0.6394 0.9071 0.039*
H17C −0.1802 0.6513 0.8309 0.039*
C18 0.5220 (3) 0.62188 (19) 0.63849 (10) 0.0224 (5)
H18A 0.5904 0.6361 0.5960 0.034*
H18B 0.4003 0.6199 0.6259 0.034*
H18C 0.5554 0.5496 0.6591 0.034*
H2 0.659 (3) 0.856 (2) 0.74000 (15) 0.022 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.03139 (14) 0.02299 (12) 0.01767 (10) −0.00772 (11) −0.00524 (10) −0.00103 (8)
O1 0.0127 (8) 0.0156 (7) 0.0200 (7) −0.0001 (7) 0.0011 (6) 0.0004 (5)
O2 0.0203 (8) 0.0183 (8) 0.0176 (7) −0.0032 (7) 0.0025 (6) 0.0005 (6)
O3 0.0228 (10) 0.0188 (8) 0.0171 (6) −0.0038 (7) 0.0049 (7) −0.0016 (5)
N1 0.0126 (10) 0.0177 (10) 0.0234 (8) −0.0018 (8) −0.0014 (8) 0.0019 (7)
C1 0.0216 (13) 0.0234 (12) 0.0328 (11) −0.0021 (11) −0.0001 (10) −0.0009 (10)
C2 0.0318 (16) 0.0194 (13) 0.0574 (16) −0.0070 (12) 0.0011 (14) 0.0022 (11)
C3 0.0310 (16) 0.0269 (14) 0.0517 (15) −0.0027 (12) 0.0041 (13) 0.0184 (11)
C4 0.0358 (16) 0.0388 (15) 0.0278 (11) 0.0018 (14) 0.0042 (12) 0.0111 (10)
C5 0.0295 (14) 0.0222 (11) 0.0252 (10) 0.0001 (11) 0.0019 (12) 0.0020 (8)
C6 0.0132 (13) 0.0196 (11) 0.0245 (10) 0.0004 (10) 0.0034 (10) 0.0023 (8)
C7 0.0159 (12) 0.0190 (11) 0.0160 (8) −0.0046 (10) −0.0001 (9) −0.0016 (8)
C8 0.0167 (13) 0.0180 (11) 0.0150 (9) 0.0035 (10) −0.0007 (9) −0.0005 (8)
C9 0.0143 (11) 0.0219 (11) 0.0211 (9) −0.0030 (11) 0.0023 (10) 0.0026 (8)
C10 0.0110 (11) 0.0163 (11) 0.0184 (9) 0.0043 (9) −0.0003 (8) 0.0024 (8)
C11 0.0165 (12) 0.0177 (10) 0.0159 (9) 0.0022 (9) −0.0006 (9) 0.0031 (8)
C12 0.0146 (12) 0.0173 (11) 0.0167 (9) 0.0016 (9) −0.0039 (9) −0.0036 (8)
C13 0.0105 (12) 0.0149 (10) 0.0204 (9) 0.0012 (9) −0.0012 (9) 0.0026 (7)
C14 0.0118 (11) 0.0167 (11) 0.0163 (9) 0.0040 (9) 0.0005 (9) 0.0015 (8)
C15 0.0149 (11) 0.0136 (11) 0.0174 (9) 0.0034 (9) −0.0026 (9) −0.0004 (7)
C16 0.0171 (13) 0.0353 (14) 0.0383 (12) −0.0027 (12) −0.0068 (12) 0.0025 (10)
C17 0.0178 (12) 0.0250 (12) 0.0345 (11) 0.0039 (14) 0.0010 (11) 0.0037 (9)
C18 0.0256 (12) 0.0229 (12) 0.0186 (9) −0.0033 (11) 0.0040 (9) −0.0058 (9)

Geometric parameters (Å, °)

Br1—C12 1.903 (2) C7—H7A 1.0000
O1—C8 1.435 (3) C8—C10 1.499 (3)
O1—C7 1.458 (3) C8—H8A 1.0000
O2—C13 1.347 (3) C9—C16 1.519 (4)
O2—H2 0.8499 (10) C9—H9A 1.0000
O3—C14 1.367 (2) C10—C11 1.386 (3)
O3—C18 1.441 (2) C10—C15 1.409 (3)
N1—C17 1.455 (3) C11—C12 1.378 (3)
N1—C8 1.456 (3) C11—H11A 0.9500
N1—C9 1.474 (3) C12—C13 1.387 (3)
C1—C2 1.392 (3) C13—C14 1.413 (3)
C1—C6 1.394 (3) C14—C15 1.382 (3)
C1—H1A 0.9500 C15—H15A 0.9500
C2—C3 1.379 (4) C16—H16A 0.9800
C2—H2A 0.9500 C16—H16B 0.9800
C3—C4 1.387 (4) C16—H16C 0.9800
C3—H3A 0.9500 C17—H17A 0.9800
C4—C5 1.389 (3) C17—H17B 0.9800
C4—H4A 0.9500 C17—H17C 0.9800
C5—C6 1.391 (3) C18—H18A 0.9800
C5—H5A 0.9500 C18—H18B 0.9800
C6—C7 1.512 (3) C18—H18C 0.9800
C7—C9 1.526 (3)
C8—O1—C7 107.31 (16) N1—C9—H9A 109.2
C13—O2—H2 107.2 (18) C16—C9—H9A 109.2
C14—O3—C18 116.80 (16) C7—C9—H9A 109.2
C17—N1—C8 113.71 (18) C11—C10—C15 119.30 (19)
C17—N1—C9 113.94 (18) C11—C10—C8 119.56 (18)
C8—N1—C9 101.95 (17) C15—C10—C8 120.99 (18)
C2—C1—C6 120.4 (2) C12—C11—C10 120.15 (19)
C2—C1—H1A 119.8 C12—C11—H11A 119.9
C6—C1—H1A 119.8 C10—C11—H11A 119.9
C3—C2—C1 119.8 (2) C11—C12—C13 122.20 (19)
C3—C2—H2A 120.1 C11—C12—Br1 119.62 (15)
C1—C2—H2A 120.1 C13—C12—Br1 118.16 (16)
C2—C3—C4 120.5 (2) O2—C13—C12 121.22 (18)
C2—C3—H3A 119.7 O2—C13—C14 121.44 (18)
C4—C3—H3A 119.7 C12—C13—C14 117.32 (19)
C3—C4—C5 119.7 (2) O3—C14—C15 126.11 (18)
C3—C4—H4A 120.2 O3—C14—C13 112.63 (18)
C5—C4—H4A 120.2 C15—C14—C13 121.26 (18)
C4—C5—C6 120.5 (2) C14—C15—C10 119.68 (19)
C4—C5—H5A 119.7 C14—C15—H15A 120.2
C6—C5—H5A 119.7 C10—C15—H15A 120.2
C5—C6—C1 119.1 (2) C9—C16—H16A 109.5
C5—C6—C7 120.85 (18) C9—C16—H16B 109.5
C1—C6—C7 120.07 (18) H16A—C16—H16B 109.5
O1—C7—C6 111.27 (17) C9—C16—H16C 109.5
O1—C7—C9 104.75 (16) H16A—C16—H16C 109.5
C6—C7—C9 115.34 (19) H16B—C16—H16C 109.5
O1—C7—H7A 108.4 N1—C17—H17A 109.5
C6—C7—H7A 108.4 N1—C17—H17B 109.5
C9—C7—H7A 108.4 H17A—C17—H17B 109.5
O1—C8—N1 103.74 (17) N1—C17—H17C 109.5
O1—C8—C10 112.86 (18) H17A—C17—H17C 109.5
N1—C8—C10 112.88 (17) H17B—C17—H17C 109.5
O1—C8—H8A 109.1 O3—C18—H18A 109.5
N1—C8—H8A 109.1 O3—C18—H18B 109.5
C10—C8—H8A 109.1 H18A—C18—H18B 109.5
N1—C9—C16 113.81 (18) O3—C18—H18C 109.5
N1—C9—C7 101.0 (2) H18A—C18—H18C 109.5
C16—C9—C7 113.98 (18) H18B—C18—H18C 109.5
C6—C1—C2—C3 −0.5 (5) C6—C7—C9—N1 149.13 (17)
C1—C2—C3—C4 0.0 (5) O1—C7—C9—C16 148.90 (18)
C2—C3—C4—C5 0.0 (5) C6—C7—C9—C16 −88.4 (2)
C3—C4—C5—C6 0.5 (5) O1—C8—C10—C11 −129.0 (2)
C4—C5—C6—C1 −1.0 (4) N1—C8—C10—C11 113.7 (2)
C4—C5—C6—C7 178.2 (3) O1—C8—C10—C15 55.5 (3)
C2—C1—C6—C5 1.0 (4) N1—C8—C10—C15 −61.8 (3)
C2—C1—C6—C7 −178.2 (2) C15—C10—C11—C12 1.4 (3)
C8—O1—C7—C6 −124.92 (17) C8—C10—C11—C12 −174.2 (2)
C8—O1—C7—C9 0.36 (18) C10—C11—C12—C13 0.0 (3)
C5—C6—C7—O1 50.7 (3) C10—C11—C12—Br1 −178.39 (17)
C1—C6—C7—O1 −130.1 (2) C11—C12—C13—O2 178.6 (2)
C5—C6—C7—C9 −68.4 (3) Br1—C12—C13—O2 −3.0 (3)
C1—C6—C7—C9 110.7 (2) C11—C12—C13—C14 −2.5 (3)
C7—O1—C8—N1 −27.71 (18) Br1—C12—C13—C14 175.97 (16)
C7—O1—C8—C10 −150.23 (16) C18—O3—C14—C15 −10.8 (3)
C17—N1—C8—O1 167.85 (16) C18—O3—C14—C13 169.59 (19)
C9—N1—C8—O1 44.77 (18) O2—C13—C14—O3 2.2 (3)
C17—N1—C8—C10 −69.6 (2) C12—C13—C14—O3 −176.71 (19)
C9—N1—C8—C10 167.27 (17) O2—C13—C14—C15 −177.4 (2)
C17—N1—C9—C16 71.3 (2) C12—C13—C14—C15 3.6 (3)
C8—N1—C9—C16 −165.77 (19) O3—C14—C15—C10 178.0 (2)
C17—N1—C9—C7 −166.13 (17) C13—C14—C15—C10 −2.3 (3)
C8—N1—C9—C7 −43.20 (18) C11—C10—C15—C14 −0.2 (3)
O1—C7—C9—N1 26.45 (18) C8—C10—C15—C14 175.3 (2)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 phenyl ring.
D—H···A D—H H···A D···A D—H···A
O2—H2···O1i 0.85 (1) 2.03 (1) 2.7853 (19) 148 (2)
C15—H15A···O2ii 0.95 2.46 3.232 (3) 138
C18—H18A···Cg2i 0.98 2.96 3.679 (3) 131

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5016).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Asaruddin, M. R., Wahab, H. A., Mohamed, N., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, o1452–o1453. [DOI] [PMC free article] [PubMed]
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  5. Diwischeck, F., Heller, E. & Holzgrabe, U. (2003). Monatsh. Chem. 134, 1105–1111.
  6. Duffy, M., Gallagher, J. F. & Lough, A. J. (2004). Acta Cryst. E60, o234–o236.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Fülöp, F., Lázár, L., Szakonyi, Z., Pihlavisto, M., Alaranta, S., Vainio, P. J., Juhakoski, A., Marjamäki, M. & Smith, D. J. (2004). Pure Appl. Chem. 76, 965–972.
  9. Khruscheva, N. S., Loim, N. M., Sokolov, V. I. & Makhaev, V. D. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 2425–2427.
  10. Moloney, G. P., Craik, D. J., Iskander, M. N. & Nero, T. L. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 199–206.
  11. Nakano, H., Osone, K., Takeshita, M., Kwon, E., Seki, C., Matsuyama, H., Takano, N. & Kohari, Y. (2010). Chem. Commun. 46, 4827–4829. [DOI] [PubMed]
  12. Panneerselvam, T. (2011). J. Adv. Pharm. Tech. Res. 2, 43–46. [DOI] [PMC free article] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Wang, Y., Chan, C., Su, Z. & Chen, C. (2010). Biophys. Chem. 147, 74–80. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811051269/is5016sup1.cif

e-68-00o35-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051269/is5016Isup2.hkl

e-68-00o35-Isup2.hkl (150.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811051269/is5016Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES