Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Dec 7;68(Pt 1):o39. doi: 10.1107/S1600536811051920

5,6-Dimethyl-1,2,4-triazin-3-amine

Man-Hua Wu a, Qi-Ming Qiu a, Sen Gao a, Qiong-Hua Jin a,*, Cun-Lin Zhang b
PMCID: PMC3254400  PMID: 22259542

Abstract

In the crystal structure of the title compound, C5H8N4, adjacent mol­ecules are connected through N—H⋯N hydrogen bonds, resulting in a zigzag chain along [100]. The amino groups and heterocyclic N atoms are involved in further N—H⋯N hydrogen bonds, forming R 2 2(8) motifs.

Related literature

For the biological and medical applications of triazine, see: Anderson et al.(2003); Gavai et al. (2009); Hunt et al. (2004). For the structures of complexes containing triazine, see: Drew et al. (2001); Li et al. (2009); Machura et al. (2008). For the structures of complexes containing the title compound, see: Jiang et al. (2011); Self et al. (1991); Wu et al. (2011). For the structures of compounds containing Inline graphic(8)-type hydrogen bonds, see: Etter (1990); Glidewell et al. (2003).graphic file with name e-68-00o39-scheme1.jpg

Experimental

Crystal data

  • C5H8N4

  • M r = 124.14

  • Orthorhombic, Inline graphic

  • a = 7.4877 (8) Å

  • b = 6.7530 (7) Å

  • c = 12.6615 (13) Å

  • V = 640.22 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.50 × 0.39 × 0.38 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.960, T max = 0.969

  • 2997 measured reflections

  • 614 independent reflections

  • 421 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.157

  • S = 1.11

  • 614 reflections

  • 58 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811051920/rn2097sup1.cif

e-68-00o39-sup1.cif (13.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051920/rn2097Isup2.hkl

e-68-00o39-Isup2.hkl (30.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811051920/rn2097Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N3i 0.86 2.19 3.045 (4) 179
N4—H4B⋯N2ii 0.86 2.09 2.947 (4) 176

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21171119), the CAIQ Basic Research Program (No. 2010 J K022), the National Keystone Basic Research Program (973 Program) under grant Nos. 2007CB310408 and 2006CB302901, the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality and the State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences.

supplementary crystallographic information

Comment

The heterocyclic nitrogen compounds containing 1,2,4-triazine moieties have drawn much attention in recent years, owing to their interesting biological and medicinal properties (Anderson et al., 2003; Gavai et al., 2009; Hunt et al.,2004). They usually act as efficient ligands in supramolecular compounds (Drew et al., 2001; Li et al., 2009; Machura et al., 2008). The title compound (I) has been used as a multidentate ligand to form poly-nuclear complexes (Self et al., 1991). In (I), hydrogen bonds are formed between the NH groups of amino group and the N atoms.

We are interested in synthesizing new transition metal complexes containing (I) (Jiang et al., 2011; Wu et al., 2011). The title compound was unexpectedly obtained in the course of synthesizing Cu(I) complexes.

In the title compound, adjacent molecules are connected by intermolecular N—H···N hydrogen bonds to form a zigzag structure (Fig. 2). In the crystal structure, the amino groups and heterocyclic N atoms are involved in hydrogen bonds,forming R22(8) type hydrogen bonds (Etter, 1990; Glidewell et al., 2003).

Experimental

A mixture of CuCN and ADMT (ADMT=3-amino-5,6-dimethyl- 1,2,4-triazine) in molar ratio of 1:1 in the mixed solution of CH3CN (7 ml)/ CH3OH (3 ml) was stirred for 3 h,then filtered. Pale yellow crystals were obtained from the filtrate after standing at room temperature for several days.

Refinement

The final refinements were performed with isotropic thermal parameters. All hydrogen atoms were located in the calculated sites and included in the final refinement in the riding model approximation with displacement parameters derived from the parent atoms to which they were bonded. The ratios of H atom Uiso to C atom Ueq are 1.5. The ratios of H atom Uiso to N atom Ueq are 1.2.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing for (I) with hydrogen bonds shown as dashed lines.

Crystal data

C5H8N4 Dx = 1.278 Mg m3
Mr = 124.14 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pnma Cell parameters from 1029 reflections
a = 7.4877 (8) Å θ = 2.7–28.0°
b = 6.7530 (7) Å µ = 0.08 mm1
c = 12.6615 (13) Å T = 293 K
V = 640.22 (12) Å3 Block, yellow
Z = 4 0.50 × 0.39 × 0.38 mm
F(000) = 264

Data collection

Bruker SMART CCD area-detector diffractometer 614 independent reflections
Radiation source: fine-focus sealed tube 421 reflections with I > 2σ(I)
graphite Rint = 0.034
phi and ω scans θmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −7→8
Tmin = 0.960, Tmax = 0.969 k = −8→7
2997 measured reflections l = −14→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0627P)2 + 0.3625P] where P = (Fo2 + 2Fc2)/3
614 reflections (Δ/σ)max < 0.001
58 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 1.0561 (4) 0.2500 0.5062 (2) 0.0514 (9)
N2 1.0506 (4) 0.2500 0.6123 (2) 0.0499 (8)
N3 0.7314 (4) 0.2500 0.60746 (19) 0.0466 (8)
N4 0.8858 (4) 0.2500 0.7657 (2) 0.0609 (10)
H4A 0.9838 0.2500 0.8011 0.073*
H4B 0.7850 0.2500 0.7982 0.073*
C1 0.8903 (4) 0.2500 0.6589 (2) 0.0447 (9)
C2 0.7407 (5) 0.2500 0.5030 (2) 0.0469 (9)
C3 0.9072 (5) 0.2500 0.4511 (2) 0.0477 (9)
C4 0.5682 (5) 0.2500 0.4422 (3) 0.0678 (12)
H4C 0.5720 0.3512 0.3890 0.102* 0.50
H4D 0.4708 0.2755 0.4896 0.102* 0.50
H4E 0.5516 0.1233 0.4093 0.102* 0.50
C5 0.9233 (5) 0.2500 0.3332 (2) 0.0624 (11)
H5A 0.8506 0.1461 0.3044 0.094* 0.50
H5B 1.0456 0.2286 0.3137 0.094* 0.50
H5C 0.8839 0.3753 0.3060 0.094* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0485 (19) 0.063 (2) 0.0425 (16) 0.000 0.0087 (13) 0.000
N2 0.0412 (17) 0.069 (2) 0.0395 (16) 0.000 0.0016 (12) 0.000
N3 0.0431 (16) 0.062 (2) 0.0346 (15) 0.000 −0.0012 (11) 0.000
N4 0.0382 (16) 0.105 (3) 0.0391 (16) 0.000 −0.0064 (12) 0.000
C1 0.0417 (19) 0.057 (2) 0.0350 (17) 0.000 −0.0008 (13) 0.000
C2 0.054 (2) 0.050 (2) 0.0374 (19) 0.000 −0.0014 (14) 0.000
C3 0.055 (2) 0.049 (2) 0.0397 (19) 0.000 0.0031 (16) 0.000
C4 0.060 (2) 0.097 (3) 0.047 (2) 0.000 −0.0118 (17) 0.000
C5 0.075 (3) 0.074 (3) 0.0376 (19) 0.000 0.0075 (18) 0.000

Geometric parameters (Å, °)

N1—C3 1.315 (4) C2—C4 1.503 (5)
N1—N2 1.344 (4) C3—C5 1.498 (4)
N2—C1 1.338 (4) C4—H4C 0.9600
N3—C2 1.325 (4) C4—H4D 0.9600
N3—C1 1.356 (4) C4—H4E 0.9600
N4—C1 1.353 (4) C5—H5A 0.9600
N4—H4A 0.8600 C5—H5B 0.9600
N4—H4B 0.8600 C5—H5C 0.9600
C2—C3 1.409 (5)
C3—N1—N2 120.2 (3) C2—C3—C5 122.4 (3)
C1—N2—N1 117.9 (3) C2—C4—H4C 109.5
C2—N3—C1 115.7 (3) C2—C4—H4D 109.5
C1—N4—H4A 120.0 H4C—C4—H4D 109.5
C1—N4—H4B 120.0 C2—C4—H4E 109.5
H4A—N4—H4B 120.0 H4C—C4—H4E 109.5
N2—C1—N4 117.6 (3) H4D—C4—H4E 109.5
N2—C1—N3 125.2 (3) C3—C5—H5A 109.5
N4—C1—N3 117.3 (3) C3—C5—H5B 109.5
N3—C2—C3 120.8 (3) H5A—C5—H5B 109.5
N3—C2—C4 117.7 (3) C3—C5—H5C 109.5
C3—C2—C4 121.5 (3) H5A—C5—H5C 109.5
N1—C3—C2 120.2 (3) H5B—C5—H5C 109.5
N1—C3—C5 117.4 (3)
C3—N1—N2—C1 0.0 N2—N1—C3—C2 0.0
N1—N2—C1—N4 180.0 N2—N1—C3—C5 180.0
N1—N2—C1—N3 0.000 (1) N3—C2—C3—N1 0.0
C2—N3—C1—N2 0.000 (1) C4—C2—C3—N1 180.0
C2—N3—C1—N4 180.0 N3—C2—C3—C5 180.0
C1—N3—C2—C3 0.0 C4—C2—C3—C5 0.0
C1—N3—C2—C4 180.0

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4A···N3i 0.86 2.19 3.045 (4) 179.
N4—H4B···N2ii 0.86 2.09 2.947 (4) 176.

Symmetry codes: (i) x+1/2, y, −z+3/2; (ii) x−1/2, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2097).

References

  1. Anderson, R. F., Shinde, S. S., Hay, M. P., Gamage, S. A. & Denny, W. A. (2003). J. Am. Chem. Soc. 125, 748–756. [DOI] [PubMed]
  2. Bruker (2007). SMART, SAINT-Plus and SADABS Bruker AXS Inc., Wisconsin, USA.
  3. Drew, M. G. B., Guillaneux, D., Hudson, M. J., Iveson, P. B., Russell, M. L. & Madic, C. (2001). Inorg. Chem. Commun. 4, 12–15.
  4. Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126.
  5. Gavai, A. V., Fink, B. E., Fairfax, D. J., Martin, G. S. & Rossiter, L. M. (2009). J. Med. Chem. 52, 6527–6530. [DOI] [PubMed]
  6. Glidewell, C., Low, J. N., Melguizo, M. & Quesada, A. (2003). Acta Cryst. C59, o9–o13. [DOI] [PubMed]
  7. Hunt, J. T., Mitt, T., Borzilleri, R., Brown, J. G. & Fargnoli, J. (2004). J. Med. Chem. 47, 4054–4059. [DOI] [PubMed]
  8. Jiang, Y.-H., Cui, L.-N., Huang, X., Jin, Q.-H. & Zhang, C.-L. (2011). Acta Cryst. E67, m1526–m1527. [DOI] [PMC free article] [PubMed]
  9. Li, L. X., Turnbull, M. M., Ackers, J., Chen, J. P., Lin, H. Y., Pan, B. F., Wang, H. & Foxman, B. M. (2009). Inorg. Chim. Acta, 362, 3845–3852.
  10. Machura, B., Switlicka, A., Kruszynski, R., Mrozinski, J., Klak, J. & Kusz, J. (2008). Polyhedron, 27, 2959–2967.
  11. Self, M. F., Pennington, W. T. & Robinson, G. H. (1991). J. Coord. Chem. 24, 69–76.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Wu, M. H., Wang, R., Li, Z. F., Xiao, Y. L., Jin, Q. H. & Zhang, C. L. (2011). Z. Kristallogr. New Cryst. Struct. 226, 555–556.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811051920/rn2097sup1.cif

e-68-00o39-sup1.cif (13.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051920/rn2097Isup2.hkl

e-68-00o39-Isup2.hkl (30.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811051920/rn2097Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES