Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Dec 10;68(Pt 1):o52. doi: 10.1107/S1600536811051518

2,5-Bis(1,3-dithiol-2-yl­idene)-1,3-dithiol­ane-4-thione

Kazumasa Ueda a,b,*, Kenta Suzuki b, Kei Kunimoto b, Kenji Yoza c
PMCID: PMC3254410  PMID: 22259554

Abstract

The asymmetric unit of the title compound, C9H4S7, contains two independent mol­ecules, in one of which the central five-membered ring is disordered over two orientations in a 0.924 (3):0.076 (3) ratio. The mol­ecular skeleton is almost planar: the average distance of the atoms from their mean plane is 0.128 (7) Å in the ordered mol­ecule, and 0.088 (5) and 0.123 (2) Å in the major and minor disorder components, respectively. The ordered and disordered mol­ecules form separate columns by stacking along the b axis. Adjacent columns inter­act via short S⋯S [3.33 (2), 3.434 (3), 3.444 (2), 3.503 (2), 3.519 (3) and 3.53 (4) Å] and S⋯H [2.814 (2), 2.87 (7), 2.92 (2), 2.9269 (18), 2.93 (2), 2.94 (2), 2.939 (2), 2.967 (2) and 2.974 (1) Å] contacts.

Related literature

For background to 2,5-di(1,3-dithiol-2-yl­idene)-1,3-dithiol­ane-4-thione derivatives, see: Iwamatsu et al. (1999, 2000); Wang et al. (2005, 2007); Hiraoka et al. (2005); Fujiwara et al. (2006, 2007); Ueda & Yoza (2009a ,b ,c ). For the synthesis, see: Ueda et al. (2010). For van der Waals radii, see: Bondi (1964).graphic file with name e-68-00o52-scheme1.jpg

Experimental

Crystal data

  • C9H4S7

  • M r = 336.54

  • Monoclinic, Inline graphic

  • a = 17.669 (5) Å

  • b = 3.9110 (11) Å

  • c = 18.380 (5) Å

  • β = 108.177 (4)°

  • V = 1206.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 93 K

  • 0.09 × 0.02 × 0.02 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.894, T max = 0.975

  • 6965 measured reflections

  • 4975 independent reflections

  • 3396 reflections with I > 2σ(I)

  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.107

  • S = 0.98

  • 4975 reflections

  • 344 parameters

  • 421 restraints

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.52 e Å−3

  • Absolute structure: Flack (1983), 1849 Friedel pairs

  • Flack parameter: −0.18 (18)

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XCIF (Bruker, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811051518/fy2030sup1.cif

e-68-00o52-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051518/fy2030Isup2.hkl

e-68-00o52-Isup2.hkl (243.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811051518/fy2030Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Donor molecules featuring a skeleton of 2,5-di(1,3-dithiol-2-ylidene)-1,3-dithiolane-4-thione (I) and 2,5-di(1,3-dithiol-2-ylidene)-1,3-dithiolane-4-quinone (II) are used for the preparation of charge transfer (CT) complexes with magnetic metal anions (Wang et al., 2005, 2007; Hiraoka et al., 2005; Fujiwara et al., 2006, 2007). In CT salts these molecules can form unique crystal structures with channels in addition to the usual layer stacking structures as a result of intermolecular S···S contacts. Through an investigation of the unique molecular arrangements of the derivatives of (I) and (II) in their crystals, we found that the derivatives of (I) are stacked in the same orientation and the derivatives of (II) are alternately stacked in opposite directions (Ueda & Yoza, 2009a, 2009b, 2009c; Ueda et al., 2010). This result suggests that the stacking orientation of the derivatives is largely influenced by their molecular skeletons. To identify the stacking orientation of skeleton (I), we synthesized (I) and investigated its crystal structure.

The asymmetric unit contains two crystallographically independent molecules. One of the two independent molecules shows orientational disorder in the C=S containing five-membered ring with occupancies of 0.924 (3) (molecule A) and 0.076 (3) (molecule B). The other molecule of the asymmetric unit, molecule C, is ordered. The framework of (I) is almost planar: the mean deviation of the atoms from their mean plane is 0.088 (5) Å for A, 0.123 (2) Å for B and 0.128 (7) Å for C.

In the crystal structure, two different orientations of the molecules are present. Both orientations enclose a dihedral angle of about 27° with the ac plane, but the mean plane of the molecules is nearly parallel either with (011) or with (01–1) (Fig. 2). Molecules with the same orientation form stacks along the b axis. The stacked molecules are separated by interplanar distances greater than 3.54 Å and have a fairly poor overlap. However some effective side-by-side contacts are observed between molecules of adjacent columns (Fig. 3). The interaction between adjacent columns is accomplished through contacts between different sulfur atoms: S9···S3Bi = 3.33 (2) Å [(i): 1–x, 1/2+y, 1–z]; S8···S3Aii = 3.434 (3) Å [(ii): x, 1+y, 1+z]; S6···S6iii = 3.444 (2) Å [(iii):–x, 1/2+y, –z]; S3C···S10i = 3.503 (2) Å; S4···S9i = 3.519 (3) Å; S2B···S3Aiv = 3.53 (4) Å [(iv): x, 1+y, z]; and through contacts between sulfur and hydrogen atoms: S2C···H9Ai = 2.814 (2) Å, S1B···H15A = 2.87 (7); S3B···H11Aiv = 2.92 (2) Å; S5···H6Ai = 2.9269 (18) Å; S3B···H11Av = 2.93 (2) Å [(v): x, y, z–1]; S3B···H12Avi = 2.94 (2) Å [(vi): 1–x, –1/2+y, 1–z]; S2C···H9Avii = 2.939 (2)Å [(vii): –x, –1/2+y, 1–z]; S3A···H8Aiii = 2.967 (2) Å; S3C···H14Aviii = 2.974 (1) Å [(viii): –x, 1/2+y, 1–z]. These distances are shorter than the sum of corresponding van der Waals radii, i.e., 3.60 Å for S···S and 3.00 Å for S···H (Bondi, 1964).

Experimental

Compound (I) was synthesized by a modification of the method used for the preparation of 2-[4,5-bis(ethylsulfanyl)-1,3-dithiol-2-ylidene]-5-(4,5-diiodo-1,3-dithiol-2-ylidene)-1,3-dithiolan-4-thione (Ueda et al., 2010). Bis(tetra-n-butylammonium)bis[2-(1,3-dithiol-2-ylidene)-1,3-dithiole-4,5-bis(thiolate)]zinc (194 mg, 0.170 mmol) reacted with 2-methylsulfanyl-1,3-dihiole-2-ylium tetrafluoroborate (89.3 mg, 0.378 mmol) in THF-DMF (4:1 = v/v) at room temperature under nitrogen, and stirring was carried out for 12 h. After separation of the reaction mixture by column chromatography on silica gel (eluent CS2) followed by recrystallization from 1:10 CS2/hexane, (I) was obtained as black needles in 79% yield.

Refinement

The H atoms were geometrically positioned with C—H: 0.98 Å, and refined as riding, with Uiso = 1.5Ueq(C).

The following SHELX instructions were applied as restraints during refinement: SADI 0.01 S1C S2C S1A S2A S1B S2B / SADI 0.01 C6C S3C C6A S3A C6B S3B / SADI 0.01 C5C S1C C5A S1A C5B S1B / SADI 0.01 C6C C5C C6A C5A C6B C5B / SADI 0.01 S2C C6C S2A C6A S2B C6B / SADI 0.01 C4C S2C C4A S2A C4B S2B / SADI 0.01 S1C C4C S1A C4A S1B C4B / FLAT S1A S2A S3A C4A C5A C6A / FLAT S1B S2B S3B C4B C5B C6B / FLAT S1C S2C S3C C4C C5C C6C / SIMU 0.01 / ISOR 0.01.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing atom labeling and 50% probability displacement ellipsoids for non-H-atoms.

Fig. 2.

Fig. 2.

Projection of the crystal packing of (I) down the bc plane.

Fig. 3.

Fig. 3.

(a) Projection of the crystal packing of molecules A and C in (I) down the ac plane. The S···S and S···H contacts are shown with blue solid lines. (b) Projection of the crystal packing of molecules B and C in (I) down the ac plane. The S···S and S···H contacts are shown with blue solid lines.

Crystal data

C9H4S7 F(000) = 680
Mr = 336.54 Dx = 1.852 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 17.669 (5) Å Cell parameters from 794 reflections
b = 3.9110 (11) Å θ = 2.3–23.9°
c = 18.380 (5) Å µ = 1.27 mm1
β = 108.177 (4)° T = 93 K
V = 1206.8 (6) Å3 Needle, black
Z = 4 0.09 × 0.02 × 0.02 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 4975 independent reflections
Radiation source: Bruker TXS fine-focus rotating anode 3396 reflections with I > 2σ(I)
Bruker Helios multilayer confocal mirror Rint = 0.054
Detector resolution: 8.333 pixels mm-1 θmax = 27.5°, θmin = 1.9°
phi and ω scans h = −22→15
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −5→4
Tmin = 0.894, Tmax = 0.975 l = −22→23
6965 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061 H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0283P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98 (Δ/σ)max = 0.002
4975 reflections Δρmax = 0.63 e Å3
344 parameters Δρmin = −0.52 e Å3
421 restraints Absolute structure: Flack (1983), 1849 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.18 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C4 0.3976 (4) 0.7807 (19) 0.2942 (4) 0.0247 (17)
C5 0.5339 (4) 1.060 (2) 0.3647 (4) 0.035 (2)
H5A 0.5870 1.1430 0.3772 0.042*
C6 0.4937 (4) 1.091 (2) 0.4121 (5) 0.035 (2)
H6A 0.5160 1.1990 0.4604 0.043*
C7 0.1148 (4) 0.3154 (18) 0.1591 (4) 0.0190 (16)
C8 −0.0317 (4) 0.151 (2) 0.1023 (4) 0.0244 (17)
H8A −0.0815 0.0767 0.0685 0.029*
C9 −0.0268 (4) 0.277 (2) 0.1707 (4) 0.0251 (18)
H9A −0.0718 0.2915 0.1884 0.030*
C10 0.3122 (4) 0.6221 (18) 0.8314 (3) 0.0139 (14)
C11 0.3743 (4) 0.922 (2) 0.9615 (4) 0.0238 (17)
H11A 0.3839 1.0134 1.0115 0.029*
C12 0.4298 (4) 0.941 (2) 0.9257 (4) 0.0248 (17)
H12A 0.4792 1.0526 0.9490 0.030*
C13 0.1820 (4) 0.1225 (19) 0.5609 (4) 0.0154 (15)
C14 0.1298 (4) −0.035 (2) 0.4192 (4) 0.0195 (16)
H14A 0.0971 −0.1098 0.3703 0.023*
C15 0.2009 (4) 0.085 (2) 0.4285 (3) 0.0205 (17)
H15A 0.2218 0.1003 0.3868 0.025*
C4A 0.3347 (6) 0.633 (2) 0.2437 (4) 0.0190 (17) 0.924 (3)
C5A 0.1947 (5) 0.384 (2) 0.1739 (4) 0.0155 (15) 0.924 (3)
C6A 0.2391 (6) 0.323 (3) 0.1228 (5) 0.021 (2) 0.924 (3)
C4B 0.191 (4) 0.346 (17) 0.181 (4) 0.018 (4) 0.076 (3)
C5B 0.335 (6) 0.59 (2) 0.248 (3) 0.023 (4) 0.076 (3)
C6B 0.331 (2) 0.485 (10) 0.173 (3) 0.023 (3) 0.076 (3)
C4C 0.2640 (3) 0.4578 (17) 0.7717 (3) 0.0170 (15)
C5C 0.1960 (3) 0.1937 (16) 0.6374 (3) 0.0151 (15)
C6C 0.1387 (3) 0.1573 (17) 0.6762 (3) 0.0158 (15)
S4 0.48789 (12) 0.8603 (6) 0.27620 (13) 0.0385 (6)
S5 0.39615 (10) 0.9263 (6) 0.38449 (10) 0.0270 (5)
S6 0.05349 (11) 0.1230 (5) 0.07570 (9) 0.0211 (4)
S7 0.06754 (10) 0.4126 (5) 0.22574 (9) 0.0201 (4)
S8 0.28575 (11) 0.7290 (5) 0.91400 (10) 0.0219 (5)
S9 0.40896 (10) 0.7580 (5) 0.83649 (10) 0.0225 (5)
S10 0.09618 (10) −0.0554 (5) 0.49847 (9) 0.0189 (4)
S11 0.25580 (10) 0.2146 (5) 0.51919 (9) 0.0204 (4)
S1A 0.2450 (5) 0.5721 (17) 0.2628 (3) 0.0191 (11) 0.924 (3)
S2A 0.33680 (13) 0.4760 (6) 0.15541 (12) 0.0277 (6) 0.924 (3)
S3A 0.20601 (13) 0.1459 (6) 0.03754 (11) 0.0275 (6) 0.924 (3)
S1B 0.246 (6) 0.52 (2) 0.268 (3) 0.015 (6) 0.076 (3)
S2B 0.242 (2) 0.312 (11) 0.114 (2) 0.021 (4) 0.076 (3)
S3B 0.4040 (14) 0.512 (7) 0.1345 (13) 0.026 (6) 0.076 (3)
S1C 0.28927 (10) 0.3657 (5) 0.68923 (9) 0.0193 (4)
S2C 0.16991 (10) 0.3150 (5) 0.76938 (9) 0.0193 (4)
S3C 0.04904 (10) −0.0125 (5) 0.64141 (10) 0.0211 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C4 0.025 (3) 0.021 (4) 0.032 (4) −0.001 (3) 0.014 (3) 0.000 (3)
C5 0.021 (4) 0.028 (5) 0.055 (5) −0.001 (3) 0.012 (3) −0.006 (4)
C6 0.024 (4) 0.028 (5) 0.048 (4) −0.006 (3) 0.002 (3) −0.004 (4)
C7 0.026 (3) 0.013 (4) 0.017 (3) 0.005 (3) 0.004 (3) 0.000 (3)
C8 0.027 (4) 0.018 (4) 0.022 (3) −0.004 (3) −0.001 (3) −0.001 (3)
C9 0.026 (3) 0.026 (4) 0.025 (4) 0.000 (3) 0.011 (3) −0.002 (3)
C10 0.016 (3) 0.010 (3) 0.014 (3) 0.002 (3) 0.003 (3) 0.000 (3)
C11 0.028 (4) 0.021 (4) 0.017 (3) 0.003 (3) −0.001 (3) −0.002 (3)
C12 0.022 (3) 0.020 (4) 0.022 (3) −0.002 (3) −0.009 (3) 0.000 (3)
C13 0.017 (3) 0.010 (3) 0.020 (3) −0.002 (3) 0.006 (3) −0.002 (3)
C14 0.020 (3) 0.022 (4) 0.013 (3) −0.001 (3) 0.000 (3) −0.001 (3)
C15 0.026 (4) 0.025 (4) 0.012 (3) 0.004 (3) 0.008 (3) 0.003 (3)
C4A 0.020 (3) 0.015 (4) 0.024 (3) 0.000 (3) 0.009 (3) 0.002 (3)
C5A 0.022 (3) 0.015 (3) 0.011 (3) 0.003 (3) 0.008 (3) 0.003 (3)
C6A 0.033 (3) 0.015 (4) 0.014 (4) 0.008 (3) 0.007 (3) 0.000 (3)
C4B 0.025 (5) 0.016 (6) 0.015 (5) 0.004 (5) 0.006 (5) 0.001 (5)
C5B 0.024 (6) 0.020 (6) 0.026 (6) 0.000 (5) 0.010 (5) 0.001 (5)
C6B 0.027 (5) 0.021 (5) 0.024 (5) 0.002 (5) 0.010 (4) 0.001 (5)
C4C 0.012 (3) 0.018 (4) 0.018 (3) −0.002 (3) 0.001 (3) −0.003 (3)
C5C 0.012 (3) 0.017 (4) 0.012 (3) −0.001 (3) −0.002 (3) 0.000 (3)
C6C 0.019 (3) 0.015 (4) 0.012 (3) −0.002 (3) 0.004 (3) −0.001 (3)
S4 0.0305 (11) 0.0339 (16) 0.0588 (14) −0.0056 (11) 0.0250 (11) −0.0026 (12)
S5 0.0204 (10) 0.0262 (12) 0.0319 (11) 0.0003 (9) 0.0046 (9) −0.0031 (10)
S6 0.0292 (11) 0.0190 (11) 0.0142 (9) −0.0007 (9) 0.0053 (8) −0.0010 (9)
S7 0.0263 (10) 0.0191 (11) 0.0157 (9) −0.0017 (9) 0.0075 (8) −0.0033 (9)
S8 0.0256 (10) 0.0229 (12) 0.0175 (9) 0.0008 (9) 0.0073 (8) −0.0053 (9)
S9 0.0188 (10) 0.0243 (12) 0.0231 (10) −0.0012 (9) 0.0047 (8) −0.0029 (9)
S10 0.0190 (9) 0.0192 (11) 0.0162 (9) −0.0016 (9) 0.0023 (8) −0.0002 (9)
S11 0.0201 (10) 0.0231 (12) 0.0176 (9) −0.0038 (9) 0.0052 (8) −0.0013 (8)
S1A 0.0212 (12) 0.020 (3) 0.0185 (13) −0.0022 (18) 0.0095 (12) −0.0003 (15)
S2A 0.0320 (12) 0.0275 (14) 0.0304 (12) −0.0002 (11) 0.0197 (10) −0.0006 (11)
S3A 0.0421 (14) 0.0252 (14) 0.0197 (11) 0.0054 (11) 0.0162 (10) −0.0023 (10)
S1B 0.015 (7) 0.016 (8) 0.017 (8) 0.000 (7) 0.007 (6) −0.002 (7)
S2B 0.030 (6) 0.018 (6) 0.016 (6) 0.007 (5) 0.008 (5) 0.004 (5)
S3B 0.027 (8) 0.029 (9) 0.025 (8) 0.009 (7) 0.010 (6) −0.002 (7)
S1C 0.0158 (9) 0.0238 (12) 0.0174 (9) −0.0032 (8) 0.0040 (7) −0.0057 (8)
S2C 0.0171 (9) 0.0224 (12) 0.0178 (9) 0.0004 (8) 0.0047 (8) −0.0012 (8)
S3C 0.0156 (9) 0.0243 (12) 0.0218 (9) −0.0010 (8) 0.0035 (8) 0.0004 (9)

Geometric parameters (Å, °)

C4—C4A 1.336 (11) C13—C5C 1.378 (8)
C4—C5B 1.38 (9) C13—S10 1.736 (7)
C4—S4 1.756 (7) C13—S11 1.744 (6)
C4—S5 1.763 (7) C14—C15 1.302 (8)
C5—C6 1.292 (9) C14—S10 1.739 (6)
C5—S4 1.758 (8) C14—H14A 0.9500
C5—H5A 0.9500 C15—S11 1.723 (7)
C6—S5 1.759 (7) C15—H15A 0.9500
C6—H6A 0.9500 C4A—S1A 1.743 (6)
C7—C4B 1.28 (6) C4A—S2A 1.746 (7)
C7—C5A 1.377 (9) C5A—C6A 1.418 (9)
C7—S7 1.727 (6) C5A—S1A 1.761 (6)
C7—S6 1.748 (7) C6A—S3A 1.646 (9)
C8—C9 1.327 (9) C6A—S2A 1.747 (10)
C8—S6 1.726 (7) C4B—S2B 1.743 (10)
C8—H8A 0.9500 C4B—S1B 1.745 (10)
C9—S7 1.742 (7) C5B—C6B 1.417 (11)
C9—H9A 0.9500 C5B—S1B 1.761 (10)
C10—C4C 1.326 (8) C6B—S3B 1.649 (11)
C10—S9 1.765 (6) C6B—S2B 1.744 (11)
C10—S8 1.772 (6) C4C—S2C 1.741 (6)
C11—C12 1.343 (8) C4C—S1C 1.747 (6)
C11—S8 1.712 (7) C5C—C6C 1.415 (7)
C11—H11A 0.9500 C5C—S1C 1.760 (6)
C12—S9 1.721 (7) C6C—S3C 1.652 (6)
C12—H12A 0.9500 C6C—S2C 1.740 (6)
C4A—C4—S4 123.6 (5) C4—C4A—S2A 122.9 (7)
C5B—C4—S4 125 (3) S1A—C4A—S2A 115.1 (5)
C4A—C4—S5 122.7 (5) C7—C5A—C6A 125.6 (7)
C5B—C4—S5 121 (3) C7—C5A—S1A 117.0 (6)
S4—C4—S5 113.6 (4) C6A—C5A—S1A 117.4 (5)
C6—C5—S4 118.2 (6) C5A—C6A—S3A 126.5 (8)
C6—C5—H5A 120.9 C5A—C6A—S2A 114.1 (6)
S4—C5—H5A 120.9 S3A—C6A—S2A 119.4 (6)
C5—C6—S5 117.8 (7) C7—C4B—S2B 120 (5)
C5—C6—H6A 121.1 C7—C4B—S1B 123 (5)
S5—C6—H6A 121.1 S2B—C4B—S1B 114.8 (9)
C4B—C7—S7 117 (3) C4—C5B—C6B 123 (7)
C5A—C7—S7 120.7 (5) C4—C5B—S1B 123 (4)
C4B—C7—S6 128 (3) C6B—C5B—S1B 113 (5)
C5A—C7—S6 125.0 (5) C5B—C6B—S3B 126 (5)
S7—C7—S6 114.3 (4) C5B—C6B—S2B 118 (5)
C9—C8—S6 119.1 (6) S3B—C6B—S2B 116 (3)
C9—C8—H8A 120.4 C10—C4C—S2C 122.5 (4)
S6—C8—H8A 120.4 C10—C4C—S1C 123.1 (4)
C8—C9—S7 115.5 (5) S2C—C4C—S1C 114.4 (3)
C8—C9—H9A 122.2 C13—C5C—C6C 124.4 (5)
S7—C9—H9A 122.2 C13—C5C—S1C 118.0 (4)
C4C—C10—S9 123.5 (4) C6C—C5C—S1C 117.5 (4)
C4C—C10—S8 123.4 (5) C5C—C6C—S3C 126.5 (5)
S9—C10—S8 113.2 (4) C5C—C6C—S2C 113.8 (4)
C12—C11—S8 117.7 (5) S3C—C6C—S2C 119.6 (3)
C12—C11—H11A 121.2 C4—S4—C5 95.2 (4)
S8—C11—H11A 121.2 C6—S5—C4 95.2 (4)
C11—C12—S9 118.2 (6) C8—S6—C7 94.7 (3)
C11—C12—H12A 120.9 C7—S7—C9 96.2 (3)
S9—C12—H12A 120.9 C11—S8—C10 95.6 (3)
C5C—C13—S10 126.7 (5) C12—S9—C10 95.3 (3)
C5C—C13—S11 119.1 (5) C13—S10—C14 94.6 (3)
S10—C13—S11 114.3 (4) C15—S11—C13 95.3 (3)
C15—C14—S10 118.4 (5) C4A—S1A—C5A 95.6 (3)
C15—C14—H14A 120.8 C6A—S2A—C4A 97.7 (5)
S10—C14—H14A 120.8 C4B—S1B—C5B 98 (2)
C14—C15—S11 117.5 (5) C6B—S2B—C4B 96 (3)
C14—C15—H15A 121.3 C4C—S1C—C5C 95.7 (3)
S11—C15—H15A 121.3 C6C—S2C—C4C 98.3 (3)
C4—C4A—S1A 122.0 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2030).

References

  1. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  2. Bruker (2010). APEX2, SAINT, XCIF Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Fujiwara, H., Wada, K., Hiraoka, T., Hayashi, T., Sugimoto, T. & Nakazumi, H. (2006). J. Low Temp. Phys. 142, 405–408.
  5. Fujiwara, H., Wada, K., Hiraoka, T., Hayashi, T., Sugimoto, T., Nakazumi, H., Teramura, M., Yokogawa, K., Yasuzuka, S. & Murata, K. (2007). Multifunctional Conducting Molecular Materials, edited by G. Saito, F. Wudl, R. C. Haddon, K. Tanigaki, T. Enoki, H. E. Katz & M. Maesato, pp. 161–164. Cambridge: RSC Publishing.
  6. Hiraoka, T., Kamada, Y., Matsumoto, T., Fujiwara, H., Sugimoto, T., Noguchi, S., Ishida, T., Nakazumi, H. & Katori, H. A. (2005). J. Mater. Chem. 15, 3479–3487.
  7. Iwamatsu, M., Kominami, T., Ueda, K., Sugimoto, T., Adachi, T., Fujita, H., Yoshino, H., Mizuno, Y., Murata, K. & Shiro, M. (2000). Inorg. Chem. 39, 3810–3815. [DOI] [PubMed]
  8. Iwamatsu, M., Kominami, T., Ueda, K., Sugimoto, T., Fujita, H. & Adachi, T. (1999). Chem. Lett. pp. 329–330. [DOI] [PubMed]
  9. Sheldrick, G. M. (1996). SADABS University of Götingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Ueda, K., Suzuki, K., Suzuki, K., Yoza, K. & Ishida, T. (2010). Phys. B (Amsterdam), 405, S69–S74.
  12. Ueda, K. & Yoza, K. (2009a). Acta Cryst E65, o2716. [DOI] [PMC free article] [PubMed]
  13. Ueda, K. & Yoza, K. (2009b). Acta Cryst. E65, o2831. [DOI] [PMC free article] [PubMed]
  14. Ueda, K. & Yoza, K. (2009c). Acta Cryst. E65, o2920. [DOI] [PMC free article] [PubMed]
  15. Wang, M., Fujiwara, H., Sugimoto, T., Noguchi, S. & Ishida, T. (2005). Inorg. Chem. 44, 1184–1186. [DOI] [PubMed]
  16. Wang, M., Xiao, X., Fujiwara, H., Sugimoto, T., Noguchi, S., Ishida, T., Mori, T. & Katori, H. A. (2007). Inorg. Chem. 46, 3049–3056. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811051518/fy2030sup1.cif

e-68-00o52-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051518/fy2030Isup2.hkl

e-68-00o52-Isup2.hkl (243.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811051518/fy2030Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES