Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Dec 10;68(Pt 1):o58. doi: 10.1107/S1600536811052160

2-(5-Bromo-3-isopropyl­sulfanyl-1-benzofuran-2-yl)acetic acid

Pil Ja Seo a, Hong Dae Choi a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC3254414  PMID: 22259558

Abstract

The title compound, C13H13BrO3S, was prepared by alkaline hydrolysis of ethyl 2-(5-bromo-3-isopropyl­sulfanyl-1-benzofuran-2-yl)acetate. In the crystal, the carboxyl groups are involved in inter­molecular O—H⋯O hydrogen bonds, which link the mol­ecules into dimers. These dimers are further packed into stacks along the c axis by inter­molecular C—H⋯π inter­actions, and by slipped π–π inter­actions between the furan rings of adjacent mol­ecules [centroid–centroid distance = 3.472 (2) Å, inter­planar distance = 3.398 (2) Å and slippage = 0.713 (2) Å].

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the crystal structures of related compounds, see: Choi et al. (2009a,b ).graphic file with name e-68-00o58-scheme1.jpg

Experimental

Crystal data

  • C13H13BrO3S

  • M r = 329.20

  • Triclinic, Inline graphic

  • a = 7.4689 (3) Å

  • b = 9.9449 (4) Å

  • c = 10.0653 (4) Å

  • α = 98.415 (2)°

  • β = 102.146 (2)°

  • γ = 110.341 (3)°

  • V = 665.38 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.24 mm−1

  • T = 296 K

  • 0.24 × 0.17 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.510, T max = 0.738

  • 11869 measured reflections

  • 3082 independent reflections

  • 2731 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.064

  • S = 1.03

  • 3082 reflections

  • 169 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811052160/bg2430sup1.cif

e-68-00o58-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811052160/bg2430Isup2.hkl

e-68-00o58-Isup2.hkl (151.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811052160/bg2430Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O3i 0.74 (3) 1.90 (3) 2.640 (2) 177 (3)
C9—H9BCg2ii 0.97 2.72 (1) 3.376 (2) 126

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Substituted benzofuran derivatives have attracted considerable interest in view of their valuable pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al. , 2009, Galal et al. , 2009, Khan et al. , 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al. , 2003). As a part of our ongoing study of 2-(5-bromo-1-benzofuran-2-yl) acetic acid analogues (Choi et al. , 2009a,b), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.007 (1) Å from the least-squares plane defined by the nine constituent atoms. In the crystal structure, the carboxyl groups are involved in intermolecular O—H···O hydrogen bonds (Table 1, first entry & Fig. 2), which link the molecules into centrosymmetric dimers. These dimers are further packed into stacks along the c axis by an intermolecular C—H···π interaction between a methylene H atom and the benzene ring (Table 1, second entry & Fig. 2), and by a weak slipped π–π interaction between the furan rings of adjacent molecules, with a Cg1···Cg1ii distance of 3.742 (2) Å and an interplanar distance of 3.398 (2) Å resulting in a slippage of 0.713 (2) Å (Fig. 2, Cg1 is the centroid of the C1-C2-C7-O1-C8 furan ring, (ii) -x+1, -y+1, -z.).

Experimental

Ethyl 2-(5-bromo-3-isopropylsulfanyl-1-benzofuran-2-yl)acetate (428 mg, 1.2 mmol) was added to a solution of potassium hydroxide (337 mg. 6 mmol) in water (10 ml) and methanol (10 ml), and the mixture was refluxed for 5 h, then cooled. Water (10 ml) was added, and the solution was extracted with dichloromethane. The aqueous layer was acidified to pH 1 with concentrated hydrochloric acid and then extracted with chloroform, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (ethyl acetate) to afford the title compound as a colorless solid [yield 86%, m.p. 432–433 K; Rf = 0.51 (ethyl acetate)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in benzene at room temperature.

Refinement

H atoms in the hydroxy group were found in a different Fourier map and refined freely. The other H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å fo the aryl, 0.98 Å for the methine, 0.97 Å for the methylene, and 0.96 Å for the methyl H atoms. Uiso(H) =1.2Ueq(C) for the aryl, methine, and methylene H atoms, and 1.5Ueq(C) for the methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the O—H···O, C—H···π and π–π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x + 2, - y + 2, - z + 1; (ii) - x + 1, - y + 1, - z.]

Crystal data

C13H13BrO3S Z = 2
Mr = 329.20 F(000) = 332
Triclinic, P1 Dx = 1.643 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.4689 (3) Å Cell parameters from 5830 reflections
b = 9.9449 (4) Å θ = 2.3–27.5°
c = 10.0653 (4) Å µ = 3.24 mm1
α = 98.415 (2)° T = 296 K
β = 102.146 (2)° Block, colourless
γ = 110.341 (3)° 0.24 × 0.17 × 0.10 mm
V = 665.38 (5) Å3

Data collection

Bruker SMART APEXII CCD diffractometer 3082 independent reflections
Radiation source: rotating anode 2731 reflections with I > 2σ(I)
graphite multilayer Rint = 0.030
Detector resolution: 10.0 pixels mm-1 θmax = 27.6°, θmin = 2.1°
φ and ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −12→12
Tmin = 0.510, Tmax = 0.738 l = −13→13
11869 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 Hydrogen site location: difference Fourier map
wR(F2) = 0.064 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.1792P] where P = (Fo2 + 2Fc2)/3
3082 reflections (Δ/σ)max = 0.001
169 parameters Δρmax = 0.52 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.19969 (3) −0.066508 (19) 0.14451 (2) 0.03256 (8)
S1 0.19347 (6) 0.56388 (5) 0.18733 (4) 0.02002 (10)
O1 0.71390 (18) 0.55476 (13) 0.17068 (13) 0.0206 (2)
O2 0.8525 (2) 1.01742 (15) 0.34019 (17) 0.0322 (3)
H2O 0.925 (4) 1.059 (3) 0.409 (3) 0.050 (9)*
O3 0.8861 (2) 0.82564 (14) 0.41728 (14) 0.0290 (3)
C1 0.4055 (2) 0.52528 (18) 0.18780 (17) 0.0180 (3)
C2 0.4198 (2) 0.38295 (18) 0.17355 (17) 0.0176 (3)
C3 0.2914 (3) 0.24052 (18) 0.16819 (18) 0.0196 (3)
H3 0.1627 0.2202 0.1749 0.024*
C4 0.3645 (3) 0.13091 (19) 0.15246 (18) 0.0213 (3)
C5 0.5565 (3) 0.1574 (2) 0.14170 (19) 0.0227 (4)
H5 0.5989 0.0799 0.1316 0.027*
C6 0.6840 (3) 0.2986 (2) 0.14606 (19) 0.0223 (4)
H6 0.8119 0.3185 0.1379 0.027*
C7 0.6116 (2) 0.40805 (18) 0.16307 (17) 0.0190 (3)
C8 0.5840 (3) 0.62221 (18) 0.18556 (17) 0.0184 (3)
C9 0.6588 (3) 0.78314 (18) 0.19365 (18) 0.0207 (3)
H9A 0.5471 0.8131 0.1809 0.025*
H9B 0.7170 0.8019 0.1172 0.025*
C10 0.8114 (3) 0.87651 (19) 0.32922 (19) 0.0210 (3)
C11 0.2061 (3) 0.6058 (2) 0.37390 (19) 0.0252 (4)
H11 0.0865 0.6237 0.3795 0.030*
C12 0.3829 (3) 0.7457 (2) 0.4566 (2) 0.0377 (5)
H12A 0.3768 0.7682 0.5511 0.056*
H12B 0.3803 0.8259 0.4144 0.056*
H12C 0.5038 0.7317 0.4565 0.056*
C13 0.1986 (3) 0.4754 (2) 0.4379 (2) 0.0326 (4)
H13A 0.3110 0.4516 0.4314 0.049*
H13B 0.0780 0.3916 0.3882 0.049*
H13C 0.2020 0.5004 0.5344 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.03694 (13) 0.01654 (10) 0.04563 (14) 0.00761 (8) 0.01796 (10) 0.00961 (8)
S1 0.0193 (2) 0.0200 (2) 0.0201 (2) 0.00800 (17) 0.00334 (17) 0.00490 (16)
O1 0.0187 (6) 0.0170 (6) 0.0213 (6) 0.0032 (5) 0.0045 (5) 0.0012 (5)
O2 0.0399 (8) 0.0150 (6) 0.0274 (8) 0.0067 (6) −0.0091 (7) −0.0003 (5)
O3 0.0344 (7) 0.0161 (6) 0.0251 (7) 0.0052 (6) −0.0054 (6) 0.0028 (5)
C1 0.0203 (8) 0.0175 (8) 0.0139 (8) 0.0061 (7) 0.0033 (6) 0.0025 (6)
C2 0.0196 (8) 0.0176 (8) 0.0125 (8) 0.0058 (7) 0.0024 (6) 0.0012 (6)
C3 0.0208 (8) 0.0190 (8) 0.0179 (8) 0.0061 (7) 0.0063 (7) 0.0041 (6)
C4 0.0249 (9) 0.0168 (8) 0.0186 (9) 0.0049 (7) 0.0051 (7) 0.0035 (6)
C5 0.0270 (9) 0.0209 (8) 0.0203 (9) 0.0119 (7) 0.0041 (7) 0.0025 (7)
C6 0.0190 (8) 0.0246 (9) 0.0205 (9) 0.0077 (7) 0.0043 (7) 0.0011 (7)
C7 0.0193 (8) 0.0189 (8) 0.0137 (8) 0.0034 (7) 0.0028 (6) 0.0013 (6)
C8 0.0214 (8) 0.0177 (8) 0.0134 (8) 0.0065 (7) 0.0027 (7) 0.0015 (6)
C9 0.0220 (8) 0.0160 (8) 0.0183 (9) 0.0026 (7) 0.0029 (7) 0.0032 (6)
C10 0.0215 (8) 0.0161 (8) 0.0217 (9) 0.0041 (7) 0.0051 (7) 0.0027 (6)
C11 0.0270 (9) 0.0309 (10) 0.0212 (9) 0.0140 (8) 0.0094 (8) 0.0056 (7)
C12 0.0431 (12) 0.0360 (12) 0.0241 (11) 0.0091 (10) 0.0077 (9) −0.0030 (8)
C13 0.0361 (11) 0.0423 (12) 0.0268 (10) 0.0185 (10) 0.0136 (9) 0.0148 (9)

Geometric parameters (Å, °)

Br1—C4 1.8996 (17) C5—H5 0.9300
S1—C1 1.7533 (17) C6—C7 1.378 (2)
S1—C11 1.8380 (18) C6—H6 0.9300
O1—C7 1.373 (2) C8—C9 1.484 (2)
O1—C8 1.378 (2) C9—C10 1.504 (2)
O2—C10 1.308 (2) C9—H9A 0.9700
O2—H2O 0.74 (3) C9—H9B 0.9700
O3—C10 1.213 (2) C11—C12 1.515 (3)
C1—C8 1.354 (2) C11—C13 1.519 (3)
C1—C2 1.445 (2) C11—H11 0.9800
C2—C3 1.393 (2) C12—H12A 0.9600
C2—C7 1.396 (2) C12—H12B 0.9600
C3—C4 1.382 (2) C12—H12C 0.9600
C3—H3 0.9300 C13—H13A 0.9600
C4—C5 1.396 (3) C13—H13B 0.9600
C5—C6 1.383 (3) C13—H13C 0.9600
C1—S1—C11 103.26 (8) C8—C9—C10 114.05 (14)
C7—O1—C8 105.80 (12) C8—C9—H9A 108.7
C10—O2—H2O 108 (2) C10—C9—H9A 108.7
C8—C1—C2 106.08 (14) C8—C9—H9B 108.7
C8—C1—S1 125.91 (13) C10—C9—H9B 108.7
C2—C1—S1 127.62 (13) H9A—C9—H9B 107.6
C3—C2—C7 119.53 (15) O3—C10—O2 124.59 (17)
C3—C2—C1 134.93 (15) O3—C10—C9 123.37 (16)
C7—C2—C1 105.53 (14) O2—C10—C9 112.04 (15)
C4—C3—C2 116.75 (15) C12—C11—C13 112.01 (17)
C4—C3—H3 121.6 C12—C11—S1 112.33 (13)
C2—C3—H3 121.6 C13—C11—S1 111.88 (13)
C3—C4—C5 123.14 (16) C12—C11—H11 106.7
C3—C4—Br1 119.60 (13) C13—C11—H11 106.7
C5—C4—Br1 117.26 (13) S1—C11—H11 106.7
C6—C5—C4 120.26 (16) C11—C12—H12A 109.5
C6—C5—H5 119.9 C11—C12—H12B 109.5
C4—C5—H5 119.9 H12A—C12—H12B 109.5
C7—C6—C5 116.58 (16) C11—C12—H12C 109.5
C7—C6—H6 121.7 H12A—C12—H12C 109.5
C5—C6—H6 121.7 H12B—C12—H12C 109.5
O1—C7—C6 125.78 (15) C11—C13—H13A 109.5
O1—C7—C2 110.49 (14) C11—C13—H13B 109.5
C6—C7—C2 123.73 (16) H13A—C13—H13B 109.5
C1—C8—O1 112.10 (14) C11—C13—H13C 109.5
C1—C8—C9 131.51 (16) H13A—C13—H13C 109.5
O1—C8—C9 116.38 (14) H13B—C13—H13C 109.5
C11—S1—C1—C8 −95.71 (16) C3—C2—C7—O1 −179.98 (14)
C11—S1—C1—C2 92.46 (16) C1—C2—C7—O1 0.32 (18)
C8—C1—C2—C3 −179.91 (18) C3—C2—C7—C6 0.6 (3)
S1—C1—C2—C3 −6.8 (3) C1—C2—C7—C6 −179.08 (16)
C8—C1—C2—C7 −0.27 (18) C2—C1—C8—O1 0.13 (19)
S1—C1—C2—C7 172.85 (13) S1—C1—C8—O1 −173.14 (12)
C7—C2—C3—C4 0.0 (2) C2—C1—C8—C9 178.91 (17)
C1—C2—C3—C4 179.61 (18) S1—C1—C8—C9 5.6 (3)
C2—C3—C4—C5 −0.2 (3) C7—O1—C8—C1 0.06 (18)
C2—C3—C4—Br1 179.88 (12) C7—O1—C8—C9 −178.91 (14)
C3—C4—C5—C6 −0.2 (3) C1—C8—C9—C10 109.0 (2)
Br1—C4—C5—C6 179.71 (13) O1—C8—C9—C10 −72.23 (19)
C4—C5—C6—C7 0.8 (3) C8—C9—C10—O3 8.9 (3)
C8—O1—C7—C6 179.14 (17) C8—C9—C10—O2 −170.96 (15)
C8—O1—C7—C2 −0.24 (17) C1—S1—C11—C12 66.06 (16)
C5—C6—C7—O1 179.67 (16) C1—S1—C11—C13 −60.93 (15)
C5—C6—C7—C2 −1.0 (3)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C2–C7 ring.
D—H···A D—H H···A D···A D—H···A
O2—H2O···O3i 0.74 (3) 1.90 (3) 2.640 (2) 177 (3)
C9—H9B···Cg2ii 0.97 2.72 (1) 3.376 (2) 126.

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2430).

References

  1. Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [DOI] [PubMed]
  2. Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195. [DOI] [PubMed]
  3. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2009). APEX2 SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o563. [DOI] [PMC free article] [PubMed]
  6. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o726. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett 19, 2420–2428. [DOI] [PubMed]
  9. Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem 13, 4796–4805. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811052160/bg2430sup1.cif

e-68-00o58-sup1.cif (22.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811052160/bg2430Isup2.hkl

e-68-00o58-Isup2.hkl (151.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811052160/bg2430Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES