Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Dec 10;68(Pt 1):o71. doi: 10.1107/S1600536811052640

N-[2-(4-Bromo­benzo­yl)eth­yl]isopropyl­aminium chloride

Abdullah Aydın a,*, Mehmet Akkurt b, Halise Inci Gul c, Ebru Mete d, Ertan Sahin d
PMCID: PMC3254426  PMID: 22259572

Abstract

The crystal structure of the title compound, C12H17BrNO+·Cl, is stabilized by N—H⋯Cl and C—H⋯O hydrogen bonds, forming a three-dimensional network. The inter­actions framework is completed by C—H⋯π contacts between a methyl­ene group and the benzene ring of a symmetry-related mol­ecule.

Related literature

For details of the pharmacological effects of Mannich bases and for the synthesis, see: Dimmock & Kumar (1997); Gul, Gul, et al. (2005); Gul, Sahin et al. (2005); Gul et al. (2007); Mete et al. (2011); Kucukoglu et al. (2011); Canturk et al. (2008); Chen et al. (1991); Suleyman et al. (2007). For bond-length data, see: Allen et al. (1987).graphic file with name e-68-00o71-scheme1.jpg

Experimental

Crystal data

  • C12H17BrNO+·Cl

  • M r = 306.62

  • Tetragonal, Inline graphic

  • a = 19.7122 (4) Å

  • c = 7.1738 (2) Å

  • V = 2787.53 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.12 mm−1

  • T = 294 K

  • 0.15 × 0.13 × 0.11 mm

Data collection

  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.632, T max = 0.709

  • 50060 measured reflections

  • 2836 independent reflections

  • 1617 reflections with I > 2σ(I)

  • R int = 0.151

Refinement

  • R[F 2 > 2σ(F 2)] = 0.076

  • wR(F 2) = 0.181

  • S = 1.07

  • 2836 reflections

  • 153 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.81 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811052640/bh2400sup1.cif

e-68-00o71-sup1.cif (16.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811052640/bh2400Isup2.hkl

e-68-00o71-Isup2.hkl (139.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811052640/bh2400Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN2⋯Cl1 0.86 (4) 2.26 (4) 3.102 (4) 166 (5)
N1—HN1⋯Cl1i 0.86 (6) 2.27 (6) 3.133 (5) 177 (9)
C12—H12B⋯O1ii 0.96 2.60 3.378 (7) 139
C9—H9BCg1iii 0.97 3.00 3.943 (6) 164

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are indebted to the Department of Chemistry, Atatürk University, Erzurum, Turkey, for use of the X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund.

supplementary crystallographic information

Comment

Mannich bases are generally formed by the reaction between formaldehyde, a secondary amine and a compound containing reactive hydrogen atoms. On occasion, aldehydes other than formaldehyde may be employed and the secondary amine may be replaced by ammonia and primary amines. This process is known as the Mannich reaction (Dimmock & Kumar, 1997).

Mannich bases display varied biological activities such as antimicrobial (Gul, Sahin, et al., 2005), cytotoxic (Gul, Gul et al., 2005; Gul et al., 2007; Mete et al., 2011; Kucukoglu et al., 2011), anticancer (Dimmock & Kumar, 1997; Chen et al., 1991), anti-inflammatory (Suleyman et al., 2007), and DNA topoisomerase I inhibiting properties (Canturk et al., 2008).

A Mannich base having at least one hydrogen atom at the β position of amine group can undergo a deamination process to generate an α,β-unsaturated ketone moiety.

In the molecule of the tile compound (Fig. 1), the bond lengths are within normal ranges (Allen et al., 1987), as well as bond angles.

In the crystal structure, molecules are linked via intermolecular N—H···Cl and C—H···O hydrogen bonds (Table 1, Fig. 2), forming a three dimensional network. Furthermore, a C—H···π interaction (Table 1) contributes to the stabilization of the crystal packing.

Experimental

A mixture of the appropriate ketone (50 mmol), para-formaldehyde (50 mmol), and iso-propylamine hydrochloride (27 mmol) was heated in an oil bath at 403 K. The reaction vessel was then removed from the oil bath and when the temperature of the mixture dropped to 338 K, ethyl acetate (40–80 ml) was added. The mixture was stirred at room temperature for 24 h. and the resulting precipitates were then collected and the Mannich base (I) was passed through a column of silica gel 60 (70–230 mesh) using methanol as eluent. After evaporation of the solvent, the product was recrystallized from methanol. M.p.: 447–449 K. Yield: 38%. 1H-NMR (CDCl3) δ 1.49 (d, J = 6.8 Hz, 6H, CH(CH3)2), 3.34–3.38 (m, 3H, CH(CH3)2 and 2 x H-2), 3.73 (t, J = 7.3 Hz, 2H, 2 x H-3), 7.50 (d, J = 8.4 Hz, 2H, H-3'/5'), 7.76 (d, 2H, J = 8.4 Hz, H-2'/6'), 9.55 (brs, 2H, NH2+). 13C-NMR (CDCl3) δ 19.4 (CH(CH3)2), 35.3, 40.2, 51.3, 129.4, 129.8, 132.3, 134.7, 195.8 (CO); MS (EI) m/z: 254 (M - CH3)+, 256 (M - CH3 + 2)+, 270.2 (M + H)+, 272.2 (M + H + 2)+. IR (KBr, cm-1): 2462 (NH2+), 1684 (CO). Calcd. for C12H17BrClNO (306.63): C 47.00, H 5.59, N 4.57. Found: C 46.74, H 5.52, N 4.59 (Mete et al., 2011).

Refinement

The H atoms of the NH2 group, HN1 and HN2, were located in a difference map and refined with a distance restraint of N—H = 0.86 (1) Å. Their displacement parameters were calculated as Uiso = 1.2Ueq(N1). The other H atoms were positioned geometrically with C—H = 0.93 (aromatic), 0.96 (methyl), 0.97 (methylene) and 0.98 Å (methine), and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The title compound with displacement ellipsoids for non-H atoms shown at the 30% probability level.

Fig. 2.

Fig. 2.

The packing and hydrogen bonding of the title salt viewed down the c axis. H atoms not involved in hydrogen bonds are omitted for the sake of clarity.

Crystal data

C12H17BrNO+·Cl Dx = 1.461 Mg m3
Mr = 306.62 Melting point: 447 K
Tetragonal, P42/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 4bc Cell parameters from 3888 reflections
a = 19.7122 (4) Å θ = 2.9–26.4°
c = 7.1738 (2) Å µ = 3.12 mm1
V = 2787.53 (11) Å3 T = 294 K
Z = 8 Block, white
F(000) = 1248 0.15 × 0.13 × 0.11 mm

Data collection

Rigaku R-AXIS RAPID-S diffractometer 2836 independent reflections
Radiation source: Sealed Tube 1617 reflections with I > 2σ(I)
Graphite Monochromator Rint = 0.151
Detector resolution: 10.0000 pixels mm-1 θmax = 26.4°, θmin = 2.9°
dtprofit.ref scans h = −24→24
Absorption correction: multi-scan (Blessing, 1995) k = −24→24
Tmin = 0.632, Tmax = 0.709 l = −8→8
50060 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0581P)2 + 4.3122P] where P = (Fo2 + 2Fc2)/3
2836 reflections (Δ/σ)max < 0.001
153 parameters Δρmax = 0.67 e Å3
2 restraints Δρmin = −0.81 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.66757 (4) 0.19433 (5) −0.04514 (15) 0.1156 (4)
O1 0.5235 (2) 0.0463 (2) 0.7192 (7) 0.0850 (17)
N1 0.6128 (2) −0.1377 (2) 0.8767 (7) 0.0540 (17)
C1 0.6340 (3) 0.0359 (3) 0.3195 (9) 0.065 (2)
C2 0.6561 (3) 0.0740 (3) 0.1698 (10) 0.073 (3)
C3 0.6384 (3) 0.1411 (3) 0.1604 (10) 0.069 (2)
C4 0.5995 (3) 0.1707 (3) 0.2962 (10) 0.074 (3)
C5 0.5762 (3) 0.1323 (3) 0.4438 (9) 0.067 (2)
C6 0.5940 (3) 0.0644 (3) 0.4585 (8) 0.057 (2)
C7 0.5686 (3) 0.0245 (3) 0.6205 (9) 0.061 (2)
C8 0.5994 (3) −0.0435 (3) 0.6592 (8) 0.063 (2)
C9 0.5742 (3) −0.0744 (3) 0.8392 (9) 0.061 (2)
C10 0.5984 (3) −0.1725 (3) 1.0610 (8) 0.0583 (19)
C11 0.6462 (3) −0.2324 (3) 1.0768 (9) 0.070 (2)
C12 0.5251 (3) −0.1928 (3) 1.0763 (8) 0.069 (2)
Cl1 0.75617 (8) −0.07602 (8) 0.9322 (2) 0.0682 (6)
H1 0.64610 −0.00960 0.32750 0.0780*
HN1 0.604 (4) −0.168 (3) 0.794 (9) 0.1390*
HN2 0.6548 (13) −0.126 (4) 0.877 (12) 0.1390*
H2 0.68250 0.05440 0.07690 0.0870*
H4 0.58890 0.21660 0.28900 0.0890*
H5 0.54840 0.15200 0.53360 0.0800*
H8A 0.64830 −0.03880 0.66520 0.0760*
H8B 0.58880 −0.07390 0.55690 0.0760*
H9A 0.58050 −0.04270 0.94100 0.0730*
H9B 0.52610 −0.08460 0.82920 0.0730*
H10 0.60870 −0.14060 1.16200 0.0700*
H11A 0.63550 −0.26500 0.98190 0.1050*
H11B 0.64120 −0.25290 1.19730 0.1050*
H11C 0.69210 −0.21710 1.06120 0.1050*
H12A 0.51320 −0.22120 0.97260 0.1030*
H12B 0.49710 −0.15300 1.07580 0.1030*
H12C 0.51820 −0.21730 1.19040 0.1030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0916 (6) 0.1139 (7) 0.1414 (9) 0.0018 (4) 0.0247 (5) 0.0597 (6)
O1 0.091 (3) 0.074 (3) 0.090 (3) 0.020 (2) 0.021 (3) 0.008 (3)
N1 0.055 (3) 0.049 (3) 0.058 (3) 0.002 (2) −0.001 (2) 0.007 (2)
C1 0.061 (4) 0.055 (4) 0.080 (4) 0.009 (3) −0.003 (3) 0.007 (3)
C2 0.067 (4) 0.067 (4) 0.084 (5) 0.003 (3) 0.006 (3) 0.011 (4)
C3 0.049 (3) 0.070 (4) 0.087 (5) −0.006 (3) −0.004 (3) 0.023 (4)
C4 0.075 (4) 0.056 (4) 0.090 (5) 0.002 (3) −0.008 (4) 0.013 (4)
C5 0.072 (4) 0.051 (3) 0.077 (4) 0.005 (3) −0.003 (3) 0.000 (3)
C6 0.062 (4) 0.050 (3) 0.060 (4) −0.002 (3) −0.010 (3) 0.004 (3)
C7 0.056 (4) 0.060 (4) 0.068 (4) 0.000 (3) −0.004 (3) −0.001 (3)
C8 0.064 (4) 0.061 (4) 0.065 (4) 0.006 (3) 0.001 (3) 0.009 (3)
C9 0.060 (4) 0.053 (3) 0.070 (4) 0.003 (3) −0.003 (3) 0.005 (3)
C10 0.068 (4) 0.056 (3) 0.051 (3) −0.003 (3) −0.004 (3) 0.005 (3)
C11 0.070 (4) 0.072 (4) 0.067 (4) 0.009 (3) −0.008 (3) 0.013 (3)
C12 0.067 (4) 0.075 (4) 0.064 (4) −0.004 (3) 0.008 (3) 0.006 (3)
Cl1 0.0608 (9) 0.0857 (11) 0.0580 (9) −0.0135 (7) 0.0045 (7) −0.0045 (8)

Geometric parameters (Å, °)

Br1—C3 1.899 (7) C10—C11 1.515 (8)
O1—C7 1.215 (7) C1—H1 0.9300
N1—C9 1.486 (7) C2—H2 0.9300
N1—C10 1.516 (8) C4—H4 0.9300
N1—HN2 0.86 (4) C5—H5 0.9300
N1—HN1 0.86 (6) C8—H8A 0.9700
C1—C2 1.381 (9) C8—H8B 0.9700
C1—C6 1.390 (9) C9—H9A 0.9700
C2—C3 1.370 (8) C9—H9B 0.9700
C3—C4 1.370 (9) C10—H10 0.9800
C4—C5 1.380 (9) C11—H11A 0.9600
C5—C6 1.388 (8) C11—H11B 0.9600
C6—C7 1.490 (9) C11—H11C 0.9600
C7—C8 1.498 (8) C12—H12A 0.9600
C8—C9 1.512 (9) C12—H12B 0.9600
C10—C12 1.503 (8) C12—H12C 0.9600
C9—N1—C10 116.2 (4) C5—C4—H4 120.00
HN2—N1—HN1 113 (8) C4—C5—H5 120.00
C9—N1—HN1 111 (5) C6—C5—H5 120.00
C10—N1—HN2 107 (6) C7—C8—H8A 109.00
C9—N1—HN2 106 (5) C7—C8—H8B 109.00
C10—N1—HN1 105 (4) C9—C8—H8A 109.00
C2—C1—C6 121.1 (6) C9—C8—H8B 109.00
C1—C2—C3 118.9 (6) H8A—C8—H8B 108.00
Br1—C3—C2 119.7 (5) N1—C9—H9A 110.00
Br1—C3—C4 119.1 (5) N1—C9—H9B 110.00
C2—C3—C4 121.3 (6) C8—C9—H9A 110.00
C3—C4—C5 119.9 (6) C8—C9—H9B 110.00
C4—C5—C6 120.2 (6) H9A—C9—H9B 108.00
C5—C6—C7 118.9 (5) N1—C10—H10 108.00
C1—C6—C7 122.5 (5) C11—C10—H10 108.00
C1—C6—C5 118.6 (5) C12—C10—H10 108.00
O1—C7—C6 120.9 (5) C10—C11—H11A 109.00
C6—C7—C8 118.7 (5) C10—C11—H11B 109.00
O1—C7—C8 120.3 (6) C10—C11—H11C 109.00
C7—C8—C9 112.7 (5) H11A—C11—H11B 110.00
N1—C9—C8 109.0 (5) H11A—C11—H11C 110.00
N1—C10—C12 111.4 (5) H11B—C11—H11C 110.00
C11—C10—C12 112.6 (5) C10—C12—H12A 109.00
N1—C10—C11 107.5 (5) C10—C12—H12B 110.00
C2—C1—H1 119.00 C10—C12—H12C 109.00
C6—C1—H1 119.00 H12A—C12—H12B 109.00
C1—C2—H2 121.00 H12A—C12—H12C 109.00
C3—C2—H2 121.00 H12B—C12—H12C 109.00
C3—C4—H4 120.00
C9—N1—C10—C11 −176.0 (5) C3—C4—C5—C6 2.3 (9)
C9—N1—C10—C12 60.1 (6) C4—C5—C6—C1 −1.7 (9)
C10—N1—C9—C8 174.9 (4) C4—C5—C6—C7 179.4 (6)
C6—C1—C2—C3 0.5 (9) C5—C6—C7—C8 −166.9 (5)
C2—C1—C6—C5 0.3 (9) C1—C6—C7—O1 −165.4 (6)
C2—C1—C6—C7 179.2 (6) C1—C6—C7—C8 14.2 (9)
C1—C2—C3—C4 0.1 (10) C5—C6—C7—O1 13.5 (9)
C1—C2—C3—Br1 −179.5 (5) O1—C7—C8—C9 −6.8 (8)
C2—C3—C4—C5 −1.4 (10) C6—C7—C8—C9 173.6 (5)
Br1—C3—C4—C5 178.1 (5) C7—C8—C9—N1 −173.8 (5)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene ring.
D—H···A D—H H···A D···A D—H···A
N1—HN2···Cl1 0.86 (4) 2.26 (4) 3.102 (4) 166 (5)
N1—HN1···Cl1i 0.86 (6) 2.27 (6) 3.133 (5) 177 (9)
C12—H12B···O1ii 0.96 2.60 3.378 (7) 139
C9—H9B···Cg1iii 0.97 3.00 3.943 (6) 164

Symmetry codes: (i) −y+1/2, x−1, −z+3/2; (ii) −x+1, −y, −z+2; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2400).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  4. Canturk, P., Kucukoglu, K., Topcu, Z., Gul, M. & Gul, H. I. (2008). Arzneim. Forsch. 58, 686–691. [PubMed]
  5. Chen, H. T., Jing, Y. K., Ji, Z. Z. & Zhang, B. F. (1991). Yaoxue Xuebao, 26, 183–192. [PubMed]
  6. Dimmock, J. R. & Kumar, P. (1997). Curr. Med. Chem. 4, 1–22.
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  9. Gul, M., Gul, H. I., Das, U. & Hanninen, O. (2005). Arzneim. Forsch. 55, 332–337. [DOI] [PubMed]
  10. Gul, H. I., Sahin, F., Gul, M., Ozturk, S. & Yerdelen, K. O. (2005). Arch. Pharm. 338, 335–338. [DOI] [PubMed]
  11. Gul, H. I., Yerdelen, K. O., Gul, M., Das, U., Pandit, B., Li, P.-K., Secen, H. & Sahin, F. (2007). Arch. Pharm. 340, 195–201. [DOI] [PubMed]
  12. Kucukoglu, K., Gul, M., Atalay, M., Mete, E., Kazaz, C., Hanninen, O. & Gul, H. I. (2011). Arzneim. Forsch. 61, 366–371. [DOI] [PubMed]
  13. Mete, E., Gul, H. I., Cetin-Atalay, R., Das, U., Sahin, E., Gul, M., Kazaz, C. & Dimmock, J. R. (2011). Arch. Pharm. Chem. Life Sci. 11, 333–339. [DOI] [PMC free article] [PubMed]
  14. Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Suleyman, H., Gul, H. I., Gul, M., Alkan, M. & Gocer, F. (2007). Biol. Pharm. Bull. 30, 63–67. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811052640/bh2400sup1.cif

e-68-00o71-sup1.cif (16.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811052640/bh2400Isup2.hkl

e-68-00o71-Isup2.hkl (139.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811052640/bh2400Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES