Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Dec 10;68(Pt 1):o72. doi: 10.1107/S1600536811051798

2-(1H-Benzotriazol-1-yl)-1-(furan-2-yl)ethanol

Özden Özel Güven a, Meral Bayraktar a, Simon J Coles b, Tuncer Hökelek c,*
PMCID: PMC3254427  PMID: 22259573

Abstract

In the title compound, C12H11N3O2, the benzotriazole ring system is approximately planar [maximum deviation = 0.008 (1) Å] and its mean plane is oriented at a dihedral angle of 24.05 (4)° with respect to the furan ring. In the crystal, O—H⋯N hydrogen bonds link the mol­ecules into chains along the ac diagonal. π–π stacking between the furan rings, between the triazole and benzene rings, and between the benzene rings [centroid–centroid distances = 3.724 (1), 3.786 (1) and 3.8623 (9) Å] are also observed.

Related literature

For general background to the biological activity of benzotriazole derivatives, see: Hirokawa et al. (1998); Yu et al. (2003); Kopanska et al. (2004). For related structures, see: Caira et al. (2004); Katritzky et al. (2001); Özel Güven et al. (2008, 2010, 2011); Nanjunda Swamy et al. (2006).graphic file with name e-68-00o72-scheme1.jpg

Experimental

Crystal data

  • C12H11N3O2

  • M r = 229.24

  • Monoclinic, Inline graphic

  • a = 11.3606 (4) Å

  • b = 11.1034 (4) Å

  • c = 8.7860 (2) Å

  • β = 96.938 (2)°

  • V = 1100.16 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 K

  • 0.50 × 0.50 × 0.20 mm

Data collection

  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.953, T max = 0.981

  • 12372 measured reflections

  • 2531 independent reflections

  • 2166 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.139

  • S = 1.11

  • 2531 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811051798/xu5402sup1.cif

e-68-00o72-sup1.cif (16.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051798/xu5402Isup2.hkl

e-68-00o72-Isup2.hkl (121.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811051798/xu5402Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N3i 0.82 2.26 2.7968 (18) 123

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the Zonguldak Karaelmas University Research Fund (project No. 2010-13-02-05).

supplementary crystallographic information

Comment

Azole compounds have important biological activities. Benzotriazol derivatives also exhibit a good degree of analgesic, anti-inflammatory, diuretic, antiviral and antihypertensive activities (Kopanska et al., 2004; Yu et al., 2003; Hirokawa et al., 1998). Crystal structures of similar compounds like 1-phenyl-2-(1H-1,2,4-triazol-1-yl)ethanol (Özel Güven et al., 2008), 2-(1H-benzotriazol-1-yl)-1-phenylethanol (Özel Güven et al., 2010), 2-(1H-benzotriazol-1-yl)-3-(2,6-dichlorophenyl)-1-phenylpropan-1-ol (Özel Güven et al., 2011), fluconazole (Caira et al., 2004), and other benzotriazole ring possesing compounds (Katritzky et al., 2001; Nanjunda Swamy et al., 2006) have been reported before. Now, we report herein the crystal structure of the title alcohol, (I).

In the molecule of the title compound (Fig. 1), the bond lengths and angles are generally within normal ranges. The planar benzotriazole ring [B (N1-N3/C7-C12)] is oriented with respect to the furan [A (O2/C2-C5)] ring at a dihedral angle of A/B = 24.05 (4)°. Atom C6 is 0.043 (2) Å away from the plane of the benzotriazole ring and atoms C1 and O1 are 0.010 (2) and 0.043 (1) Å away from the plane of the furan ring, respectively.

In the crystal, O—H···N hydrogen bonds (table 1) link the molecules into chains (Fig. 2). There also exist π···π contacts between the furan rings, between the triazole and benzene rings and between the benzene rings, Cg1—Cg1i, Cg2—Cg3ii and Cg3—Cg3ii, may further stabilize the structure [centroid-centroid distances = 3.724 (1), 3.786 (1) and 3.8623 (9) Å; symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) -x, 1 - y, 1 - z; Cg1, Cg2 and Cg3 are the centroids of the rings A (O2/C2-C5), C (N1-N3/C7/C12) and D (C7-C12), respectively].

Experimental

The title compound, (I), was synthesized by reduction of 2-(1H-benzotriazol-1-yl)-1-(furan-2-yl)ethanone with sodiumborohydrate. A mixture of 2-(1H-benzotriazol-1-yl)-1-(furan-2-yl)ethanone (1010 mg, 4.44 mmol) and sodium borohydrate (561 mg, 8.89 mmol) in ethanol (50 ml) was refluxed for 4 h. After evaporation of the solvent, the mixture was neutralized with dilute HCl, and then refluxed for 30 min. After the mixture was cooled, the solution was alkalinized with dilute NaOH and the resulting precipitate was filtered. The filtrate was extracted with chloroform, then the organic phase was dried and evaporated. The residue was crystallized from 2-propanol to obtain colorless crystals suitable for X-ray analysis (yield; 634 mg, 62%).

Refinement

H atoms were positioned geometrically with O—H = 0.82 Å (for OH group), C—H = 0.98, 0.93 and 0.97 Å for methine, aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C,O), where k = 1.5 for OH H-atom and k = 1.2 for all other H-atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A partial packing diagram. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C12H11N3O2 F(000) = 480
Mr = 229.24 Dx = 1.384 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6399 reflections
a = 11.3606 (4) Å θ = 2.9–27.5°
b = 11.1034 (4) Å µ = 0.10 mm1
c = 8.7860 (2) Å T = 120 K
β = 96.938 (2)° Block, colorless
V = 1100.16 (6) Å3 0.50 × 0.50 × 0.20 mm
Z = 4

Data collection

Bruker–Nonius KappaCCD diffractometer 2531 independent reflections
Radiation source: fine-focus sealed tube 2166 reflections with I > 2σ(I)
graphite Rint = 0.037
φ and ω scans θmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) h = −14→14
Tmin = 0.953, Tmax = 0.981 k = −14→14
12372 measured reflections l = −10→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054 H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0748P)2 + 0.4779P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max < 0.001
2531 reflections Δρmax = 0.58 e Å3
155 parameters Δρmin = −0.55 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.144 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.20677 (10) 0.98199 (10) 0.08354 (12) 0.0223 (3)
H1 0.1559 0.9346 0.1048 0.033*
O2 0.50236 (10) 1.06715 (11) 0.24705 (13) 0.0247 (3)
N1 0.18510 (11) 0.91870 (12) 0.39959 (14) 0.0196 (3)
N2 0.22565 (12) 0.82297 (13) 0.48488 (16) 0.0249 (3)
N3 0.13604 (12) 0.75376 (13) 0.50674 (16) 0.0248 (3)
C1 0.30653 (14) 0.97510 (14) 0.19621 (17) 0.0193 (3)
H1A 0.3392 0.8933 0.1989 0.023*
C2 0.39723 (13) 1.06237 (14) 0.15318 (17) 0.0194 (3)
C3 0.57056 (15) 1.15175 (15) 0.18424 (19) 0.0257 (4)
H3 0.6471 1.1732 0.2247 0.031*
C4 0.51146 (15) 1.19920 (15) 0.05628 (19) 0.0252 (4)
H4 0.5385 1.2581 −0.0062 0.030*
C5 0.39773 (14) 1.14020 (15) 0.03582 (18) 0.0238 (4)
H5 0.3367 1.1533 −0.0429 0.029*
C6 0.26911 (14) 1.00691 (14) 0.35398 (17) 0.0214 (3)
H6A 0.3386 1.0091 0.4298 0.026*
H6B 0.2330 1.0862 0.3496 0.026*
C7 0.06500 (13) 0.91156 (13) 0.36343 (16) 0.0178 (3)
C8 −0.01985 (14) 0.98551 (14) 0.27982 (17) 0.0202 (3)
H8 0.0010 1.0560 0.2326 0.024*
C9 −0.13571 (14) 0.94734 (15) 0.27193 (17) 0.0226 (4)
H9 −0.1949 0.9939 0.2182 0.027*
C10 −0.16792 (14) 0.83958 (15) 0.34283 (17) 0.0232 (4)
H10 −0.2474 0.8174 0.3339 0.028*
C11 −0.08469 (14) 0.76679 (14) 0.42472 (18) 0.0222 (4)
H11 −0.1059 0.6962 0.4713 0.027*
C12 0.03398 (13) 0.80499 (13) 0.43403 (17) 0.0191 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0207 (6) 0.0231 (6) 0.0226 (6) −0.0047 (4) 0.0004 (4) −0.0002 (4)
O2 0.0204 (6) 0.0259 (6) 0.0271 (6) −0.0032 (4) −0.0001 (4) 0.0002 (4)
N1 0.0181 (6) 0.0205 (6) 0.0205 (6) 0.0001 (5) 0.0030 (5) 0.0020 (5)
N2 0.0224 (7) 0.0249 (7) 0.0272 (7) 0.0045 (5) 0.0023 (5) 0.0044 (5)
N3 0.0231 (7) 0.0221 (7) 0.0293 (7) 0.0043 (5) 0.0038 (5) 0.0059 (6)
C1 0.0204 (7) 0.0172 (7) 0.0203 (7) −0.0007 (6) 0.0028 (6) −0.0012 (5)
C2 0.0168 (7) 0.0204 (7) 0.0213 (7) 0.0006 (6) 0.0031 (6) −0.0038 (6)
C3 0.0203 (8) 0.0251 (8) 0.0322 (8) −0.0052 (6) 0.0054 (6) −0.0052 (6)
C4 0.0246 (8) 0.0237 (8) 0.0285 (8) −0.0047 (6) 0.0087 (6) −0.0016 (6)
C5 0.0223 (8) 0.0264 (8) 0.0228 (7) −0.0012 (6) 0.0029 (6) 0.0007 (6)
C6 0.0201 (7) 0.0221 (8) 0.0223 (7) −0.0039 (6) 0.0041 (6) −0.0025 (6)
C7 0.0185 (7) 0.0178 (7) 0.0173 (7) −0.0002 (6) 0.0034 (5) −0.0017 (5)
C8 0.0248 (8) 0.0178 (7) 0.0184 (7) 0.0020 (6) 0.0040 (6) 0.0030 (5)
C9 0.0213 (8) 0.0274 (8) 0.0185 (7) 0.0056 (6) 0.0002 (6) −0.0009 (6)
C10 0.0190 (7) 0.0286 (8) 0.0224 (7) −0.0031 (6) 0.0043 (6) −0.0042 (6)
C11 0.0243 (8) 0.0191 (8) 0.0244 (8) −0.0022 (6) 0.0074 (6) −0.0004 (6)
C12 0.0212 (8) 0.0169 (7) 0.0195 (7) 0.0022 (6) 0.0041 (6) 0.0004 (5)

Geometric parameters (Å, °)

O1—C1 1.4139 (18) C4—H4 0.9300
O1—H1 0.8200 C5—C4 1.440 (2)
O2—C2 1.3681 (19) C5—H5 0.9300
O2—C3 1.375 (2) C6—H6A 0.9700
N1—N2 1.3492 (18) C6—H6B 0.9700
N1—C6 1.4571 (19) C7—C12 1.401 (2)
N1—C7 1.365 (2) C8—C7 1.404 (2)
N3—N2 1.308 (2) C8—C9 1.376 (2)
N3—C12 1.377 (2) C8—H8 0.9300
C1—C6 1.539 (2) C9—H9 0.9300
C1—H1A 0.9800 C10—C9 1.417 (2)
C2—C1 1.496 (2) C10—H10 0.9300
C2—C5 1.346 (2) C11—C10 1.379 (2)
C3—C4 1.345 (2) C11—C12 1.406 (2)
C3—H3 0.9300 C11—H11 0.9300
C1—O1—H1 109.5 N1—C6—C1 110.77 (12)
C2—O2—C3 106.13 (12) N1—C6—H6A 109.5
N2—N1—C7 110.36 (12) N1—C6—H6B 109.5
N2—N1—C6 119.43 (12) C1—C6—H6A 109.5
C7—N1—C6 130.13 (13) C1—C6—H6B 109.5
N3—N2—N1 108.96 (13) H6A—C6—H6B 108.1
N2—N3—C12 108.40 (13) N1—C7—C8 133.73 (14)
O1—C1—C2 107.84 (12) N1—C7—C12 104.11 (13)
O1—C1—C6 109.45 (12) C12—C7—C8 122.15 (14)
O1—C1—H1A 109.6 C7—C8—H8 122.0
C2—C1—C6 110.64 (12) C9—C8—C7 115.98 (14)
C2—C1—H1A 109.6 C9—C8—H8 122.0
C6—C1—H1A 109.6 C8—C9—C10 122.27 (15)
O2—C2—C1 116.78 (13) C8—C9—H9 118.9
C5—C2—O2 110.66 (14) C10—C9—H9 118.9
C5—C2—C1 132.56 (14) C9—C10—H10 119.1
O2—C3—H3 124.6 C11—C10—C9 121.81 (15)
C4—C3—O2 110.75 (14) C11—C10—H10 119.1
C4—C3—H3 124.6 C10—C11—C12 116.47 (14)
C3—C4—C5 106.01 (14) C10—C11—H11 121.8
C3—C4—H4 127.0 C12—C11—H11 121.8
C5—C4—H4 127.0 N3—C12—C7 108.16 (13)
C2—C5—C4 106.45 (14) N3—C12—C11 130.53 (15)
C2—C5—H5 126.8 C7—C12—C11 121.31 (14)
C4—C5—H5 126.8
C6—N1—N2—N3 −177.41 (13) C5—C2—C1—O1 0.9 (2)
C7—N1—N2—N3 −0.44 (17) C5—C2—C1—C6 −118.73 (19)
N2—N1—C6—C1 92.27 (16) O2—C2—C5—C4 −0.09 (18)
C7—N1—C6—C1 −84.02 (19) C1—C2—C5—C4 −179.58 (15)
N2—N1—C7—C8 179.68 (16) O2—C3—C4—C5 −0.27 (18)
N2—N1—C7—C12 0.62 (16) C2—C5—C4—C3 0.21 (18)
C6—N1—C7—C8 −3.8 (3) N1—C7—C12—N3 −0.58 (16)
C6—N1—C7—C12 177.17 (14) N1—C7—C12—C11 179.06 (14)
C12—N3—N2—N1 0.05 (17) C8—C7—C12—N3 −179.77 (13)
N2—N3—C12—C7 0.34 (17) C8—C7—C12—C11 −0.1 (2)
N2—N3—C12—C11 −179.25 (15) C9—C8—C7—N1 −178.60 (15)
C3—O2—C2—C1 179.51 (13) C9—C8—C7—C12 0.3 (2)
C3—O2—C2—C5 −0.07 (17) C7—C8—C9—C10 −0.4 (2)
C2—O2—C3—C4 0.22 (18) C11—C10—C9—C8 0.3 (2)
O1—C1—C6—N1 64.08 (16) C10—C11—C12—N3 179.57 (15)
C2—C1—C6—N1 −177.23 (12) C10—C11—C12—C7 0.0 (2)
O2—C2—C1—O1 −178.53 (12) C12—C11—C10—C9 −0.1 (2)
O2—C2—C1—C6 61.80 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N3i 0.82 2.26 2.7968 (18) 123

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5402).

References

  1. Caira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci. 93, 601–611. [DOI] [PubMed]
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  4. Hirokawa, Y., Yamazaki, H., Yoshida, N. & Kato, S. (1998). Bioorg. & Med. Chem. Lett. 8, 1973–1978. [DOI] [PubMed]
  5. Katritzky, A. R., Zhang, S. M., Kurz, T., Wang, M. Y. & Steel, P. J. (2001). Org. Lett. 3, 2807–2809. [DOI] [PubMed]
  6. Kopanska, K., Najda, A., Zebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. & Bretner, M. (2004). Bioorg. Med. Chem. 12, 2617–2624. [DOI] [PubMed]
  7. Nanjunda Swamy, S., Basappa, Sarala, G., Priya, B. S., Gaonkar, S. L., Shashidhara Prasad, J. & Rangappa, K. S. (2006). Bioorg. Med. Chem. Lett. 16, 999–1004. [DOI] [PubMed]
  8. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
  10. Özel Güven, Ö., Bayraktar, M., Coles, S. J. & Hökelek, T. (2010). Acta Cryst. E66, o959. [DOI] [PMC free article] [PubMed]
  11. Özel Güven, Ö., Çapanlar, S., Coles, S. J. & Hökelek, T. (2011). Acta Cryst. E67, o2510. [DOI] [PMC free article] [PubMed]
  12. Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008). Acta Cryst. E64, o1254. [DOI] [PMC free article] [PubMed]
  13. Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Yu, K. L., Zhang, Y., Civiello, R. L., Kadow, K. F., Cianci, C., Krystal, M. & Meanwell, N. A. (2003). Bioorg. Med. Chem. Lett. 13, 2141–2144. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811051798/xu5402sup1.cif

e-68-00o72-sup1.cif (16.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051798/xu5402Isup2.hkl

e-68-00o72-Isup2.hkl (121.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811051798/xu5402Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES