Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Dec 10;68(Pt 1):o94–o95. doi: 10.1107/S1600536811052494

2-(5-Fluoro-2,3-dioxoindolin-1-yl)ethyl 4-methyl­piperazine-1-carbodithio­ate

Yao Wang a, Hui-Hui Lin a, Sheng-Li Cao a,*
PMCID: PMC3254445  PMID: 22259593

Abstract

In the title compound, C16H18FN3O2S2, the methyl­piperazine ring adopts a chair conformation, while the (2,3-dioxoindolin-1-yl)ethyl unit is linked to one of the N atoms of the piperazine ring via the carbodithio­ate group. In the crystal, each mol­ecule is linked to its neighbors within the (Inline graphic03) plane through weak C—H(methyl­ene)⋯O, C—H(ar­yl)⋯O and C—H(methyl­ene)⋯S inter­actions. Perpendicular to this plane mol­ecules are connected through inter­molecular short N⋯π(pyrrole ring) contacts [N⋯C centroid = 3.232 (2) Å], another set of C—H(methyl­ene)⋯O inter­actions and through short contacts between carbodithio­ate S atoms and the pyrrole rings [C⋯centroid = 3.695 (3), S⋯centroid = 3.403 (2) Å].

Related literature

For background to indoline-2,3-dione and its derivatives, see: Bhattacharya & Chakrabarti (1998); Sridhar & Ramesh (2001); Medvedev et al. (1996) and to dithio­carbamates, see: Ozkirimli et al. (2005); Cao et al. (2005); Gaspari et al. (2006). For analogues of 5-fluoro­indoline-2,3-dione, see: Wang et al. (2010). For N⋯π contacts, see: Black et al. (2007). For van der Waals radii, see Bondi (1964). For the thickness of phenyl rings, see: Malone et al. (1997). For C=O⋯π (pyrid­yl) contacts, see: Wan et al. (2008)graphic file with name e-68-00o94-scheme1.jpg

Experimental

Crystal data

  • C16H18FN3O2S2

  • M r = 367.45

  • Monoclinic, Inline graphic

  • a = 10.0258 (4) Å

  • b = 15.9925 (6) Å

  • c = 11.0016 (5) Å

  • β = 106.656 (3)°

  • V = 1689.96 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 296 K

  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2007) T min = 0.658, T max = 0.746

  • 18809 measured reflections

  • 3861 independent reflections

  • 3058 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.100

  • S = 1.04

  • 3861 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811052494/zl2432sup1.cif

e-68-00o94-sup1.cif (25.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811052494/zl2432Isup2.hkl

e-68-00o94-Isup2.hkl (189.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811052494/zl2432Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13B⋯O2i 0.97 2.50 3.225 (2) 131
C12—H12A⋯O2ii 0.97 2.61 3.385 (2) 137
C15—H15B⋯O2ii 0.97 2.62 3.383 (2) 136
C1—H1A⋯O1iii 0.93 2.70 3.282 (3) 121
C2—H2A⋯O1iii 0.93 2.67 3.275 (2) 124
C12—H12B⋯S2i 0.97 2.97 3.866 (3) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (project No. 20972099) and the Beijing Municipal Commission of Education for financial support.

supplementary crystallographic information

Comment

Indoline-2,3-dione and its derivatives are well known for their broad spectrum biological and pharmacological properties including anticonvulsant (Bhattacharya & Chakrabarti, 1998), anti-inflammatory (Sridhar et al., 2001) and anxiogenic (Medvedev et al., 1996) activities. On the other hand, dithiocarbamates also exhibit a large range of biological activities such as fungicidal (Ozkirimli et al., 2005) and antitumor activities (Cao et al., 2005; Gaspari et al., 2006). In an attempt to obtain compounds that might also exhibit antitumor properties, but possibly with increased potency and selectivity, we designed and synthesized the title compoud (C16H18N3O2FS2), which consists of an indole core with a dithiocarbamate side chain (Scheme 1). In the present context, we report the crystal structure of the new compound.

In the crystalline structure of the title compound, the 1-methylpiperazine ring adopts a chair conformation, while the indoline-2,3-dione ethyl moiety is linked to one of the N atoms of the piperazine ring via the carbodithioate group, with the ethyl group in a trans-conformation (N1—C9—C10—S2 torsion angle of 175.74 (11)°, Fig. 1). This trans-conformation differentiates the title compound from the related compound 2-(2,3-dioxoindolin-1-yl)ethyl-4-(4-nitrophenyl)piperazine-1-carbodithioate reported by us recently (Wang et al., 2010), which was found to have a gauge-conformation with an N4(pyrrole)—C19—C20—S2 torsion angle of 66.16 (15)°. Through weak C13—H13B(methylene)···O2i, C—H(aryl)···O1ii and C12—H12B(methylene)···S2iii interactions each molecule is linked to its neighbors within the (-1 0 3) Miller plane (Table 1 and Fig. 2). Perpendicular to this plane molecules are connected through intermolecular short N···π (pyrrole ring) contacts, another set of C—H(methylene)···O interactions (Table 1) and through short contacts between carbodithioate sulfur atoms and the pyrrole rings (C11═S1···Cg1iv, Table 2). A short contact is observed between the nitrogen atom N1 and the π-electron desnity of the pyrrole ring, with an N3···Cgv (Cg = C5-C6-C7-N1-C8, (v) = -x+1.5, y+0.5, -z+1.5) distance equal to 3.232 (2) Å, which is shorter than the van der Waals distance (3.40 Å) on the basis of Pauling's value for the half thickness of phenyl rings (1.85 Å) (Malone et al.,1997) and the van der Waals radius of N (1.55 Å) (Bondi, 1964). It is comparable to the N(pyrazinyl)···centroid(pyrazinyl) distance of 3.05 Å in {[Ni(L)(NO3)2]} (L = bis(2-pyraylmethyl)sulfide) reported by Black et al. (2007). Regarding the C11═S1···π contact (Table 2), the C═S bond is almost parallel to the pyrrole ring with a C11═S1···Cg1(pyrrole) angle equal to 86.42 (2)°, a contact mode similar to that of the C═O···π (pyridyl) contact in Cu(L)2(BF4)2 (L = 2,6-pyridinediylbis(3-pyridinyl)methanone) reported by Wan et al. (2008).

Experimental

A suspension of 1-methylpiperazine (2.4 mmol), carbon disulfide (0.72 mL, 12 mmol) and anhydrous potassium phosphate (0.51 g, 2.4 mmol) in N,N-dimethylformamide (15 mL) was stirred at room temperature for 30 minutes. Then, 1-(2-bromoethyl)-5-fluoroindoline-2,3-dione (2 mmol) was added and stirring was continued for 3.5 h. The reaction mixture was poured into water (100 mL) and the resulting precipitate was separated by filtration and further purified by column chromatography on silica gel with dichloromethane/methanol = 95:5 (v/v) as the eluent to give the title compound (Rf = 0.44, m.p. 472.2-473.2 K; yield 78%). After two weeks, the orange crystals of the title compound were deposited by slow evaporation from a solution of dichloromethane/N,N-dimethylformamide 1:1 (v/v) at room temperature.

Refinement

All H atoms were discernible in the difference electron density maps. Nevertheless, the hydrogen atoms were placed into idealized positions and allowed to ride on their respective carrier atoms, with C—H = 0.93 and 0.97 Å for aryl and methylene hydrogens, respectively. Uiso(H) = 1.2Ueq(C)aryl/methylene.

Figures

Fig. 1.

Fig. 1.

The title molecule with the atomic numbering scheme. The displacement ellipsoids of the non-hydrogen atoms are shown at the 30% probability level.

Fig. 2.

Fig. 2.

The intermolecular C—H(aryl)···O, C—H(methylene)···S and C—H(methylene)···O interactions of the title compound within the (-1 0 3) Miller plane. View perpendicular to this plane.

Fig. 3.

Fig. 3.

View down the b direction of the stacking structure of the title compound. All weak non-covalent interactions are omitted for clarity.

Crystal data

C16H18FN3O2S2 F(000) = 768
Mr = 367.45 Dx = 1.444 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 222 reflections
a = 10.0258 (4) Å θ = 2.3–27.6°
b = 15.9925 (6) Å µ = 0.34 mm1
c = 11.0016 (5) Å T = 296 K
β = 106.656 (3)° Block, colorless
V = 1689.96 (12) Å3 0.30 × 0.30 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3861 independent reflections
Radiation source: fine-focus sealed tube 3058 reflections with I > 2σ(I)
graphite Rint = 0.031
CCD area detector scans θmax = 27.6°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker 2007) h = −13→13
Tmin = 0.658, Tmax = 0.746 k = −20→20
18809 measured reflections l = −11→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.3797P] P = (Fo2 + 2Fc2)/3
3861 reflections (Δ/σ)max = 0.001
217 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.91389 (4) 0.66656 (2) 0.57656 (4) 0.04717 (13)
S2 0.69048 (4) 0.53592 (2) 0.54985 (5) 0.04795 (14)
N1 1.04768 (13) 0.40980 (8) 0.72003 (13) 0.0436 (3)
N2 0.64449 (12) 0.69676 (7) 0.54089 (14) 0.0423 (3)
N3 0.42553 (14) 0.81754 (8) 0.50085 (14) 0.0466 (3)
O1 1.22167 (14) 0.21917 (7) 0.75006 (15) 0.0677 (4)
O2 0.93355 (12) 0.28341 (8) 0.68042 (13) 0.0580 (3)
F1 1.60973 (12) 0.46870 (8) 0.86069 (15) 0.0840 (4)
C1 1.24078 (19) 0.51646 (9) 0.77343 (17) 0.0477 (4)
H1A 1.1821 0.5626 0.7618 0.057*
C2 1.3845 (2) 0.52580 (10) 0.80939 (19) 0.0554 (4)
H2A 1.4233 0.5790 0.8224 0.066*
C3 1.46982 (18) 0.45705 (11) 0.82584 (19) 0.0555 (5)
C4 1.41990 (17) 0.37630 (10) 0.80778 (18) 0.0502 (4)
H4A 1.4793 0.3305 0.8192 0.060*
C5 1.27711 (16) 0.36716 (9) 0.77186 (16) 0.0419 (4)
C6 1.19005 (16) 0.29208 (9) 0.74546 (17) 0.0465 (4)
C7 1.03847 (16) 0.32457 (10) 0.70982 (17) 0.0449 (4)
C8 1.18809 (15) 0.43610 (9) 0.75556 (15) 0.0397 (3)
C9 0.92604 (17) 0.46265 (11) 0.70586 (17) 0.0488 (4)
H9A 0.9553 0.5161 0.7465 0.059*
H9B 0.8643 0.4365 0.7483 0.059*
C10 0.84770 (16) 0.47709 (10) 0.56780 (17) 0.0446 (4)
H10A 0.8247 0.4235 0.5257 0.054*
H10B 0.9073 0.5069 0.5269 0.054*
C11 0.74743 (15) 0.64129 (9) 0.55535 (15) 0.0368 (3)
C12 0.50387 (16) 0.67350 (10) 0.5460 (2) 0.0531 (5)
H12A 0.5005 0.6763 0.6331 0.064*
H12B 0.4842 0.6164 0.5168 0.064*
C13 0.39430 (17) 0.73083 (11) 0.4648 (2) 0.0545 (4)
H13A 0.3903 0.7235 0.3763 0.065*
H13B 0.3040 0.7163 0.4745 0.065*
C14 0.55667 (18) 0.83880 (10) 0.47625 (18) 0.0507 (4)
H14A 0.5765 0.8976 0.4946 0.061*
H14B 0.5482 0.8297 0.3872 0.061*
C15 0.67565 (16) 0.78703 (9) 0.55582 (18) 0.0470 (4)
H15A 0.7590 0.7989 0.5309 0.056*
H15B 0.6935 0.8024 0.6443 0.056*
C16 0.3137 (2) 0.87270 (12) 0.4299 (2) 0.0615 (5)
H16A 0.2276 0.8563 0.4449 0.092*
H16B 0.3051 0.8686 0.3410 0.092*
H16C 0.3350 0.9294 0.4575 0.092*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.03141 (19) 0.0426 (2) 0.0657 (3) −0.00238 (15) 0.01100 (18) −0.00061 (18)
S2 0.03104 (19) 0.03047 (19) 0.0770 (3) 0.00221 (13) 0.00697 (18) 0.00188 (17)
N1 0.0375 (6) 0.0350 (6) 0.0536 (9) 0.0071 (5) 0.0055 (6) 0.0042 (6)
N2 0.0310 (6) 0.0303 (6) 0.0618 (9) 0.0001 (5) 0.0072 (6) −0.0043 (6)
N3 0.0431 (7) 0.0370 (7) 0.0530 (9) 0.0105 (5) 0.0030 (6) −0.0005 (6)
O1 0.0549 (7) 0.0274 (6) 0.1107 (12) 0.0032 (5) 0.0075 (7) −0.0003 (6)
O2 0.0407 (6) 0.0551 (7) 0.0713 (9) −0.0104 (5) 0.0047 (6) 0.0008 (6)
F1 0.0452 (6) 0.0693 (8) 0.1238 (12) −0.0187 (5) 0.0025 (7) 0.0018 (7)
C1 0.0571 (9) 0.0290 (7) 0.0549 (10) 0.0053 (7) 0.0127 (8) 0.0033 (7)
C2 0.0618 (11) 0.0337 (8) 0.0655 (12) −0.0110 (7) 0.0102 (9) −0.0015 (7)
C3 0.0416 (9) 0.0483 (9) 0.0680 (12) −0.0110 (7) 0.0019 (8) 0.0006 (8)
C4 0.0386 (8) 0.0371 (8) 0.0670 (12) 0.0029 (6) 0.0026 (8) 0.0035 (7)
C5 0.0388 (8) 0.0278 (7) 0.0531 (10) 0.0014 (6) 0.0039 (7) 0.0020 (6)
C6 0.0402 (8) 0.0306 (7) 0.0621 (11) 0.0000 (6) 0.0041 (7) 0.0013 (7)
C7 0.0378 (8) 0.0399 (8) 0.0516 (10) −0.0002 (6) 0.0042 (7) 0.0028 (7)
C8 0.0403 (7) 0.0315 (7) 0.0434 (9) 0.0046 (6) 0.0058 (7) 0.0038 (6)
C9 0.0428 (8) 0.0481 (9) 0.0556 (11) 0.0139 (7) 0.0144 (8) 0.0060 (7)
C10 0.0357 (7) 0.0366 (7) 0.0582 (10) 0.0080 (6) 0.0083 (7) −0.0004 (7)
C11 0.0326 (7) 0.0332 (7) 0.0411 (8) 0.0000 (5) 0.0047 (6) −0.0016 (6)
C12 0.0321 (7) 0.0320 (7) 0.0921 (14) 0.0004 (6) 0.0130 (8) −0.0041 (8)
C13 0.0341 (8) 0.0466 (9) 0.0742 (12) 0.0037 (7) 0.0014 (8) −0.0134 (8)
C14 0.0519 (9) 0.0373 (8) 0.0588 (11) 0.0038 (7) 0.0092 (8) 0.0006 (7)
C15 0.0410 (8) 0.0300 (7) 0.0660 (11) −0.0022 (6) 0.0090 (8) −0.0053 (7)
C16 0.0582 (11) 0.0553 (11) 0.0632 (12) 0.0224 (9) 0.0050 (9) 0.0085 (9)

Geometric parameters (Å, °)

S1—C11 1.6673 (15) C4—H4A 0.9300
S2—C11 1.7747 (15) C5—C8 1.397 (2)
S2—C10 1.7973 (15) C5—C6 1.464 (2)
N1—C7 1.369 (2) C6—C7 1.547 (2)
N1—C8 1.413 (2) C9—C10 1.514 (2)
N1—C9 1.4550 (19) C9—H9A 0.9700
N2—C11 1.3353 (19) C9—H9B 0.9700
N2—C12 1.4746 (19) C10—H10A 0.9700
N2—C15 1.4763 (19) C10—H10B 0.9700
N3—C13 1.452 (2) C12—C13 1.511 (2)
N3—C14 1.457 (2) C12—H12A 0.9700
N3—C16 1.464 (2) C12—H12B 0.9700
O1—C6 1.2056 (18) C13—H13A 0.9700
O2—C7 1.2039 (19) C13—H13B 0.9700
F1—C3 1.357 (2) C14—C15 1.509 (2)
C1—C8 1.382 (2) C14—H14A 0.9700
C1—C2 1.389 (3) C14—H14B 0.9700
C1—H1A 0.9300 C15—H15A 0.9700
C2—C3 1.373 (3) C15—H15B 0.9700
C2—H2A 0.9300 C16—H16A 0.9600
C3—C4 1.379 (2) C16—H16B 0.9600
C4—C5 1.379 (2) C16—H16C 0.9600
C11—S2—C10 103.29 (7) C9—C10—S2 112.11 (11)
C7—N1—C8 110.95 (12) C9—C10—H10A 109.2
C7—N1—C9 122.35 (14) S2—C10—H10A 109.2
C8—N1—C9 126.50 (13) C9—C10—H10B 109.2
C11—N2—C12 122.86 (13) S2—C10—H10B 109.2
C11—N2—C15 120.31 (13) H10A—C10—H10B 107.9
C12—N2—C15 114.61 (12) N2—C11—S1 124.34 (11)
C13—N3—C14 107.92 (13) N2—C11—S2 113.37 (11)
C13—N3—C16 110.97 (14) S1—C11—S2 122.29 (8)
C14—N3—C16 110.77 (14) N2—C12—C13 111.44 (14)
C8—C1—C2 117.62 (14) N2—C12—H12A 109.3
C8—C1—H1A 121.2 C13—C12—H12A 109.3
C2—C1—H1A 121.2 N2—C12—H12B 109.3
C3—C2—C1 120.51 (15) C13—C12—H12B 109.3
C3—C2—H2A 119.7 H12A—C12—H12B 108.0
C1—C2—H2A 119.7 N3—C13—C12 110.78 (14)
F1—C3—C2 118.80 (16) N3—C13—H13A 109.5
F1—C3—C4 118.20 (16) C12—C13—H13A 109.5
C2—C3—C4 123.00 (16) N3—C13—H13B 109.5
C3—C4—C5 116.40 (15) C12—C13—H13B 109.5
C3—C4—H4A 121.8 H13A—C13—H13B 108.1
C5—C4—H4A 121.8 N3—C14—C15 111.70 (14)
C4—C5—C8 121.70 (14) N3—C14—H14A 109.3
C4—C5—C6 130.89 (14) C15—C14—H14A 109.3
C8—C5—C6 107.41 (13) N3—C14—H14B 109.3
O1—C6—C5 130.57 (15) C15—C14—H14B 109.3
O1—C6—C7 124.27 (15) H14A—C14—H14B 107.9
C5—C6—C7 105.15 (12) N2—C15—C14 111.42 (13)
O2—C7—N1 126.86 (15) N2—C15—H15A 109.3
O2—C7—C6 127.14 (15) C14—C15—H15A 109.3
N1—C7—C6 106.00 (13) N2—C15—H15B 109.3
C1—C8—C5 120.76 (14) C14—C15—H15B 109.3
C1—C8—N1 128.76 (14) H15A—C15—H15B 108.0
C5—C8—N1 110.48 (13) N3—C16—H16A 109.5
N1—C9—C10 111.95 (14) N3—C16—H16B 109.5
N1—C9—H9A 109.2 H16A—C16—H16B 109.5
C10—C9—H9A 109.2 N3—C16—H16C 109.5
N1—C9—H9B 109.2 H16A—C16—H16C 109.5
C10—C9—H9B 109.2 H16B—C16—H16C 109.5
H9A—C9—H9B 107.9
C8—C1—C2—C3 0.2 (3) C7—N1—C8—C1 178.77 (17)
C1—C2—C3—F1 179.83 (18) C9—N1—C8—C1 −6.3 (3)
C1—C2—C3—C4 0.3 (3) C7—N1—C8—C5 −0.9 (2)
F1—C3—C4—C5 −179.72 (18) C9—N1—C8—C5 174.01 (15)
C2—C3—C4—C5 −0.1 (3) C7—N1—C9—C10 −80.2 (2)
C3—C4—C5—C8 −0.4 (3) C8—N1—C9—C10 105.47 (19)
C3—C4—C5—C6 −179.75 (19) N1—C9—C10—S2 175.74 (11)
C4—C5—C6—O1 1.0 (4) C11—S2—C10—C9 87.13 (13)
C8—C5—C6—O1 −178.4 (2) C12—N2—C11—S1 −168.35 (14)
C4—C5—C6—C7 −179.90 (19) C15—N2—C11—S1 −6.2 (2)
C8—C5—C6—C7 0.70 (19) C12—N2—C11—S2 11.7 (2)
C8—N1—C7—O2 −179.46 (18) C15—N2—C11—S2 173.86 (12)
C9—N1—C7—O2 5.4 (3) C10—S2—C11—N2 178.69 (12)
C8—N1—C7—C6 1.28 (18) C10—S2—C11—S1 −1.28 (13)
C9—N1—C7—C6 −173.87 (15) C11—N2—C12—C13 −150.62 (16)
O1—C6—C7—O2 −1.3 (3) C15—N2—C12—C13 46.3 (2)
C5—C6—C7—O2 179.54 (18) C14—N3—C13—C12 63.3 (2)
O1—C6—C7—N1 177.94 (19) C16—N3—C13—C12 −175.16 (16)
C5—C6—C7—N1 −1.21 (18) N2—C12—C13—N3 −55.4 (2)
C2—C1—C8—C5 −0.7 (3) C13—N3—C14—C15 −62.61 (18)
C2—C1—C8—N1 179.63 (17) C16—N3—C14—C15 175.73 (14)
C4—C5—C8—C1 0.9 (3) C11—N2—C15—C14 151.30 (15)
C6—C5—C8—C1 −179.65 (16) C12—N2—C15—C14 −45.1 (2)
C4—C5—C8—N1 −179.43 (16) N3—C14—C15—N2 53.36 (19)
C6—C5—C8—N1 0.04 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C13—H13B···O2i 0.97 2.50 3.225 (2) 131
C12—H12A···O2ii 0.97 2.61 3.385 (2) 137
C15—H15B···O2ii 0.97 2.62 3.383 (2) 136
C1—H1A···O1iii 0.93 2.70 3.282 (3) 121
C2—H2A···O1iii 0.93 2.67 3.275 (2) 124
C12—H12B···S2i 0.97 2.97 3.866 (3) 155
C11—S1···Cg1iv 1.6673 (15) 3.403 (2) 3.695 (3) 86.43 (6)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+3/2, y+1/2, −z+3/2; (iii) −x+5/2, y+1/2, −z+3/2; (iv) −x+5/2, y+3/2, −z+3/2.

Table 2 C═S···π-electron ring interactions (Å)

C═S···Cg C···Cg S···Cg
C11═S1···Cg1i 3.695 (3) 3.403 (2)

Symmetry code: (i) -x+2,-y+1,-z+1. Cg1 is the centroid of N1-C8-C5-C6-C7 (pyrrole).

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2432).

References

  1. Bhattacharya, S. K. & Chakrabarti, A. (1998). Indian J. Exp. Biol. 36, 118–121. [PubMed]
  2. Black, C. A., Hanton, L. R. & Spicer, M. D. (2007). Inorg. Chem. 46, 3669–3679. [DOI] [PubMed]
  3. Bondi, A. (1964). J. Phys. Chem. 68, 441–51.
  4. Bruker (2007). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cao, S. L., Feng, Y. P., Jiang, Y. Y., Liu, S. Y., Ding, G. Y. & Li, R. T. (2005). Bioorg. Med. Chem. Lett. 15, 1915–1917. [DOI] [PubMed]
  6. Gaspari, P., Banerjee, T., Malachowski, W. P., Muller, A. J., Prendergast, G. C., DuHadaway, J., Bennett, S. & Donovan, A. M. (2006). J. Med. Chem. 49, 684–692. [DOI] [PMC free article] [PubMed]
  7. Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J Chem. Soc. Faraday Trans. 93, 3429–3436.
  8. Medvedev, A. E., Clow, A., Sandler, M. & Glover, V. (1996). Biochem. Pharmacol. 52, 385–391. [DOI] [PubMed]
  9. Ozkirimli, S., Apak, T. I., Kiraz, M. & Yegenoglu, Y. (2005). Arch. Pharm. Res. 28, 1213–1218. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Sridhar, S. K. & Ramesh, A. (2001). Biol. Pharm. Bull. 24, 1149–1152. [DOI] [PubMed]
  13. Wan, C. Q., Chen, X. D. & Mak, T. C. W. (2008). CrystEngComm, 10, 475–478.
  14. Wang, Y., Wan, C.-Q., Cao, S.-L. & Zheng, T. (2010). Acta Cryst. E66, o2243. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811052494/zl2432sup1.cif

e-68-00o94-sup1.cif (25.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811052494/zl2432Isup2.hkl

e-68-00o94-Isup2.hkl (189.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811052494/zl2432Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES