Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Dec 14;68(Pt 1):o111. doi: 10.1107/S1600536811051531

5-Bromo-N-methyl­pyrimidin-2-amine

Qi Yang a, Ning Xu b, Kai Zhu a, Xiaoping Lv a, Ping-fang Han a,*
PMCID: PMC3254458  PMID: 22259398

Abstract

In the title mol­ecule, C5H6BrN3, the pyrimidine ring is essentially planar, with an r.m.s. deviation of 0.007 Å. The Br and N atoms substituted to the pyrimidine ring are coplanar with the ring [displacements = 0.032 (1) and 0.009 (5) Å, respectively], while the methyl C atom lies 0.100 (15) Å from this plane with a dihedral angle between the pyrimidine ring and the methyl­amine group of 4.5 (3)°. In the crystal, C—H⋯N, C—H⋯Br and N—H⋯N hydrogen bonds link the mol­ecules into a two-dimensional network in the (011) plane.

Related literature

Derivatives of pyrimidine are important chemical materials, see: Yu et al. (2007). For a related structure, see: Aakeroey et al. (2005).graphic file with name e-68-0o111-scheme1.jpg

Experimental

Crystal data

  • C5H6BrN3

  • M r = 188.04

  • Triclinic, Inline graphic

  • a = 3.9900 (8) Å

  • b = 9.862 (2) Å

  • c = 10.006 (2) Å

  • α = 61.57 (3)°

  • β = 83.84 (3)°

  • γ = 87.45 (3)°

  • V = 344.24 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.88 mm−1

  • T = 293 K

  • 0.10 × 0.05 × 0.05 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.591, T max = 0.758

  • 1454 measured reflections

  • 1260 independent reflections

  • 714 reflections with I > 2σ(I)

  • R int = 0.089

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.100

  • S = 1.00

  • 1260 reflections

  • 82 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811051531/pv2488sup1.cif

e-68-0o111-sup1.cif (13.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051531/pv2488Isup2.hkl

e-68-0o111-Isup2.hkl (62.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811051531/pv2488Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.86 2.19 3.035 (7) 169
C1—H1B⋯Brii 0.96 2.85 3.751 (8) 157
C5—H5A⋯N3iii 0.93 2.59 3.357 (7) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Dr Bo-nian Liu from Nanjing University of Technology for useful discussions and the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Some derivatives of pyrimidin are important chemical materials (Yu et al., 2007). Here in this article, the preparation and crystal structure of the title compound is presented. The pyrimidin ring is essentially planar with rms deviation 0.0071. The atoms Br and N1 are coplanar with the pyrimidin ring while C1 lies 0.100 (15) Å from this plane with a dihedral angle between the pyrimidin ring and the methylamine group 4.5 (3)°. In the crystal structure, intermolecular C—H···N, C—H···Br and N—H···N hydrogen bonding interactions link the molecules into a two dimensional cluster in (0 1 1) plane (Tab. 1 and Fig. 2).

Experimental

5-Bromo-hexahydro-pyrimidine (2.06 g, 0.01 mol) and 1,3-propanediamine (1.48 g, 0.02 mol) were refluxed in 10 ml benzene for 18 h. After completion of the reaction (TLC control), the product was washed with cold toluene (2*15 ml), at room temperature, dried over sodium sulfate and yielded 2.43 g (69%) of the title compound which was further purified by crystallization from methanol. Crystals of the title compound suitable for X-ray crystallographic studies were obstained by slow evaporation of a methanol solution.

Refinement

H atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.93 and 0.96 Å for aryl and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(N/C-aryl) or 1.5Ueq(C-methyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing atom-numbering scheme and displacement ellipsoids plotted at 30% probability level.

Fig. 2.

Fig. 2.

A packing diagram of the title compound. The intermolecular hydrogen bonding interactions are shown as dashed lines.

Crystal data

C5H6BrN3 Z = 2
Mr = 188.04 F(000) = 184
Triclinic, P1 Dx = 1.814 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 3.9900 (8) Å Cell parameters from 25 reflections
b = 9.862 (2) Å θ = 9–14°
c = 10.006 (2) Å µ = 5.88 mm1
α = 61.57 (3)° T = 293 K
β = 83.84 (3)° Block, colorless
γ = 87.45 (3)° 0.10 × 0.05 × 0.05 mm
V = 344.24 (16) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer 714 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.089
graphite θmax = 25.4°, θmin = 2.3°
ω/2θ scans h = 0→4
Absorption correction: ψ scan (North et al., 1968) k = −11→11
Tmin = 0.591, Tmax = 0.758 l = −11→11
1454 measured reflections 3 standard reflections every 200 reflections
1260 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0385P)2] where P = (Fo2 + 2Fc2)/3
1260 reflections (Δ/σ)max < 0.001
82 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br 0.15554 (17) 0.32133 (9) 0.25400 (8) 0.0790 (4)
N1 −0.2779 (12) 0.9216 (6) 0.1902 (5) 0.0673 (15)
H1A −0.2201 1.0018 0.1048 0.081*
C1 −0.4717 (15) 0.9457 (7) 0.3050 (7) 0.080 (2)
H1B −0.5157 1.0538 0.2663 0.120*
H1C −0.3489 0.9094 0.3930 0.120*
H1D −0.6814 0.8903 0.3330 0.120*
N2 0.0176 (11) 0.7834 (5) 0.0874 (5) 0.0545 (13)
C2 −0.1772 (14) 0.7836 (7) 0.2042 (7) 0.0494 (15)
N3 −0.2888 (11) 0.6545 (6) 0.3321 (5) 0.0549 (13)
C3 0.1196 (13) 0.6469 (7) 0.1010 (7) 0.0592 (16)
H3A 0.2605 0.6407 0.0239 0.071*
C4 0.0086 (14) 0.5125 (7) 0.2352 (7) 0.0535 (16)
C5 −0.1934 (14) 0.5251 (7) 0.3455 (7) 0.0574 (17)
H5A −0.2648 0.4360 0.4340 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br 0.0629 (5) 0.0737 (5) 0.0811 (6) −0.0023 (3) 0.0026 (3) −0.0229 (4)
N1 0.059 (3) 0.064 (4) 0.049 (3) −0.015 (3) 0.015 (3) −0.006 (3)
C1 0.082 (5) 0.050 (4) 0.077 (5) −0.001 (3) 0.037 (4) −0.015 (4)
N2 0.048 (3) 0.061 (3) 0.042 (3) 0.003 (2) 0.015 (2) −0.019 (3)
C2 0.049 (4) 0.060 (4) 0.042 (4) 0.000 (3) −0.009 (3) −0.025 (3)
N3 0.048 (3) 0.049 (3) 0.041 (3) −0.013 (2) 0.013 (2) −0.002 (3)
C3 0.039 (3) 0.074 (4) 0.058 (4) −0.001 (3) 0.013 (3) −0.028 (4)
C4 0.046 (4) 0.061 (4) 0.047 (4) 0.004 (3) −0.006 (3) −0.020 (3)
C5 0.054 (4) 0.044 (4) 0.053 (4) −0.010 (3) −0.006 (3) −0.005 (3)

Geometric parameters (Å, °)

Br—C4 1.876 (6) N2—C3 1.336 (7)
N1—C2 1.347 (7) C2—N3 1.354 (7)
N1—C1 1.424 (7) N3—C5 1.264 (7)
N1—H1A 0.8600 C3—C4 1.409 (8)
C1—H1B 0.9600 C3—H3A 0.9300
C1—H1C 0.9600 C4—C5 1.347 (8)
C1—H1D 0.9600 C5—H5A 0.9300
N2—C2 1.333 (7)
C2—N1—C1 125.5 (5) N1—C2—N3 118.5 (5)
C2—N1—H1A 117.2 C5—N3—C2 118.5 (5)
C1—N1—H1A 117.2 N2—C3—C4 118.4 (6)
N1—C1—H1B 109.5 N2—C3—H3A 120.8
N1—C1—H1C 109.5 C4—C3—H3A 120.8
H1B—C1—H1C 109.5 C5—C4—C3 119.4 (6)
N1—C1—H1D 109.5 C5—C4—Br 122.4 (5)
H1B—C1—H1D 109.5 C3—C4—Br 118.1 (5)
H1C—C1—H1D 109.5 N3—C5—C4 121.9 (5)
C2—N2—C3 117.5 (5) N3—C5—H5A 119.1
N2—C2—N1 117.3 (5) C4—C5—H5A 119.1
N2—C2—N3 124.2 (6)
C3—N2—C2—N1 179.6 (5) C2—N2—C3—C4 1.7 (8)
C3—N2—C2—N3 −2.9 (8) N2—C3—C4—C5 −0.5 (9)
C1—N1—C2—N2 −176.7 (6) N2—C3—C4—Br −179.6 (4)
C1—N1—C2—N3 5.7 (8) C2—N3—C5—C4 −1.4 (9)
N2—C2—N3—C5 2.8 (8) C3—C4—C5—N3 0.4 (9)
N1—C2—N3—C5 −179.7 (5) Br—C4—C5—N3 179.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···N2i 0.86 2.19 3.035 (7) 169.
C1—H1B···Brii 0.96 2.85 3.751 (8) 157.
C5—H5A···N3iii 0.93 2.59 3.357 (7) 140.

Symmetry codes: (i) −x, −y+2, −z; (ii) x−1, y+1, z; (iii) −x−1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2488).

References

  1. Aakeroey, C. B., Desper, J., Elisabeth, E., Helfrich, B. A., Levin, B. & Urbina, J. F. (2005). Z. Kristallogr 220, 325–332.
  2. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Yu, Z. H., Niu, C. W., Ban, S. R., Wen, X. & Xi, Z. (2007). Chin. Sci. Bull 52, 1929–1941.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811051531/pv2488sup1.cif

e-68-0o111-sup1.cif (13.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811051531/pv2488Isup2.hkl

e-68-0o111-Isup2.hkl (62.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811051531/pv2488Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES