Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Dec 14;68(Pt 1):o119. doi: 10.1107/S1600536811052780

1-Benzoyl-3-(2,4,5-trichloro­phen­yl)thio­urea

M Khawar Rauf a,*, Masahiro Ebihara b, Amin Badshah a, Imtiaz-ud-Din a
PMCID: PMC3254466  PMID: 22259406

Abstract

The benzene and phenyl rings in the title compound, C14H9Cl3N2OS, form a dihedral angle of 40.98 (6)°. The mol­ecule exists in the thione form with typical thio­urea C—S [1.666 (2) Å] and C—O [1.227 (3) Å] bond lengths as well as shortened C—N bonds [1.345 (3) and 1.386 (2) Å]. An intra­molecular N—H⋯O hydrogen bond stabilizes the mol­ecular conformation. In the crystal, pairs of N—H⋯S hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For information on thio­urea derivatives, see: Patil & Chedekel (1984); Baily et al. (1996); Namgun et al. (2001); Koch (2001); Wegner et al. (1986); Krishnamurthy et al. (1999); Murtaza et al. (2009a ,b ). For related structures, see: Khawar Rauf et al. (2009a ,b ). For bond-length data, see: Allen et al. (1987). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-68-0o119-scheme1.jpg

Experimental

Crystal data

  • C14H9Cl3N2OS

  • M r = 359.64

  • Monoclinic, Inline graphic

  • a = 33.111 (8) Å

  • b = 3.8413 (7) Å

  • c = 25.220 (6) Å

  • β = 115.995 (2)°

  • V = 2883.1 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998) T min = 0.800, T max = 1.000

  • 11264 measured reflections

  • 3264 independent reflections

  • 2686 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.084

  • S = 1.06

  • 3264 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation and Rigaku, 2001); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and TEXSAN (Molecular Structure Corporation and Rigaku, 2004); software used to prepare material for publication: Yadokari-XG_2009 (Kabuto et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811052780/bg2439sup1.cif

e-68-0o119-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811052780/bg2439Isup2.hkl

e-68-0o119-Isup2.hkl (160.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811052780/bg2439Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.89 2.586 (2) 137
N2—H2⋯S1i 0.86 2.83 3.6771 (19) 168

Symmetry code: (i) Inline graphic.

Acknowledgments

MKR is grateful to the Quaid-i-Azam University, Islamabad, for financial support for a post-doctoral fellowship.

supplementary crystallographic information

Comment

Thiourea derivatives are very useful building blocks for the synthesis of a wide range of aliphatic macromolecular and heterocyclic compounds. Thus, benzothiazoles have been prepared from arylthioureas in the presence of bromine (Patil & Chedekel, 1984), 2-aminothiazoles from the condensation of thiourea with α-halocarbonyl compounds (Baily et al., 1996), and 2-Methyl-aminothiazolines from N-(2-hydroxyethyl)-N'-methylthioureas (Namgun et al., 2001). N, N-dialkyl-N-aroylthioureas have been efficiently used for the extraction of Nickle, Palladium and Platinum metals (Koch, 2001). Aliphatic and acylthioureas are well known for their antimicrobial activities (Wegner et al., 1986). Symmetrical and unsymmetrical thioureas have shown antifungal activity against the plant pathogens (Krishnamurthy et al., 1999). We became interested in the synthesis of these thioureas as intermediates in the synthesis of novel guanidines(Murtaza et al., 2009a ; 2009b) and heterocyclic compounds for the systematic study of bioactivity and Complexation behaviour. Hence, we present here the crystal structure of the title compound, (I), Fig. 1. Comparison with N-benzoyl-N'-phenylthioureas [Cambridge Structural Database (Mogul Version 1.7; Allen, 2002) and (Allen et al., 1987)], show the molecule to exist in the thione form with typical thiourea C—S and C—O bonds, as well as shortened C—N bond lengths. Comparison with N-benzoyl-N'-phenylthioureas (Khawar Rauf et al., 2009a,b) suggests the 2,4,5-trichloro substitution on phenyl ring implies no significant effect on these bond lengths. Compound (I) (Fig. 1) shows the typical Thiourea C═S and C═O double bonds as well as shortened C—N bond lengths. The thiocarbonyl and carbonyl groups are almost coplanar, as reflected by the torsion angles C1—N2—C2—O1 [-5.0 (3)] and N1—C1—N2—C2 [1.7 (3)]. This is associated with the expected typical thiourea intramolecular N—H···O H–bond (Table 1), forming a six-membered ring commonly observed in this class of compounds (Khawar Rauf et al., 2009a,b). The dihedral angles to the N1 C1 S1 N2 C2 O1 plane are 50.97 (4)° for the ring formed by C3 to C8 and 11.44 (7)° for the ring formed by C9 to C14. The crystal packing shows intramolecular N—H···O and intermolecular N—H···S H–bonds (Table 1, Fig. 2). The Cl atoms are not involved in any type of H–bonds.

Experimental

Freshly prepared benzoylisothiocyanate (1.63 g, 10 mmol) was dissolved in acetone (50 ml) and stirred for 45 minutes. Afterwards neat 2,4,5-trichloroaniline(1.96 g, 10 mmol) was added and the resulting mixture was stirred for 1 h. The reaction mixture was then poured into acidified water and stirred well. The solid product was separated and washed with deionized water and purified by recrystallization from methanol/1,1-dichloromethane (1:1 v/v) to give fine crystals of the title compound (I), with an overall yield of 95%. Full spectroscopic and physical characterization will be reported elsewhere.

Refinement

Hydrogen atoms were included in calculated positions and refined as riding on their parent atom with N—H = 0.86 Å and Uiso(H) = 1.2U(Neq), C—H = 0.93 Å and Uiso(H) = 1.2U(Ceq).

Figures

Fig. 1.

Fig. 1.

Molecular diagram of (I). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds shown as dashed lines.

Fig. 2.

Fig. 2.

Packing diagram of (I) viewed along b-axis. Hydrogen bonds shown as dashed lines.

Crystal data

C14H9Cl3N2OS F(000) = 1456
Mr = 359.64 Dx = 1.657 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2yc Cell parameters from 3588 reflections
a = 33.111 (8) Å θ = 3.4–27.5°
b = 3.8413 (7) Å µ = 0.78 mm1
c = 25.220 (6) Å T = 296 K
β = 115.995 (2)° Prism, colorless
V = 2883.1 (11) Å3 0.20 × 0.20 × 0.20 mm
Z = 8

Data collection

Rigaku/MSC Mercury CCD diffractometer 3264 independent reflections
Radiation source: Sealed Tube 2686 reflections with I > 2σ(I)
Graphite Monochromator Rint = 0.039
Detector resolution: 14.6306 pixels mm-1 θmax = 27.5°, θmin = 3.2°
dtprofit.ref scans h = −42→31
Absorption correction: multi-scan (REQAB; Rigaku, 1998) k = −3→4
Tmin = 0.800, Tmax = 1.000 l = −28→32
11264 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0345P)2 + 0.4746P] where P = (Fo2 + 2Fc2)/3
3264 reflections (Δ/σ)max = 0.001
190 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Experimental. ????
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.43321 (7) 0.2438 (4) 0.27137 (9) 0.0156 (4)
S1 0.435250 (18) 0.44890 (12) 0.21438 (2) 0.01721 (13)
N1 0.39554 (6) 0.1658 (4) 0.27661 (7) 0.0169 (4)
H1 0.3985 0.0785 0.3095 0.020*
N2 0.47294 (6) 0.1480 (4) 0.31893 (7) 0.0161 (4)
H2 0.4973 0.2018 0.3166 0.019*
C2 0.47806 (7) −0.0243 (5) 0.36979 (9) 0.0183 (4)
O1 0.44567 (5) −0.0919 (4) 0.37941 (7) 0.0262 (4)
C3 0.35153 (7) 0.2166 (5) 0.23204 (9) 0.0159 (4)
C4 0.31883 (7) 0.3736 (5) 0.24474 (9) 0.0169 (4)
C5 0.27552 (7) 0.4225 (4) 0.20171 (10) 0.0183 (5)
H5 0.2542 0.5274 0.2110 0.022*
C6 0.26409 (7) 0.3141 (5) 0.14447 (9) 0.0175 (4)
C7 0.29612 (7) 0.1512 (5) 0.13109 (9) 0.0170 (4)
C8 0.33904 (7) 0.0996 (4) 0.17480 (9) 0.0157 (4)
H8 0.3600 −0.0154 0.1658 0.019*
Cl1 0.332696 (18) 0.51597 (12) 0.31608 (2) 0.02171 (14)
Cl2 0.210441 (17) 0.39364 (12) 0.09054 (2) 0.02358 (14)
Cl3 0.283000 (19) 0.00640 (12) 0.06075 (2) 0.02230 (14)
C9 0.52450 (7) −0.1244 (4) 0.41257 (9) 0.0160 (4)
C10 0.56177 (7) −0.1060 (5) 0.40132 (10) 0.0202 (5)
H10 0.5589 −0.0209 0.3653 0.024*
C11 0.60327 (7) −0.2139 (5) 0.44354 (10) 0.0262 (5)
H11 0.6282 −0.2027 0.4356 0.031*
C12 0.60807 (7) −0.3382 (5) 0.49742 (10) 0.0236 (5)
H12 0.6361 −0.4100 0.5257 0.028*
C13 0.57106 (8) −0.3556 (5) 0.50921 (10) 0.0278 (5)
H13 0.5741 −0.4375 0.5455 0.033*
C14 0.52959 (8) −0.2506 (5) 0.46687 (10) 0.0250 (5)
H14 0.5047 −0.2644 0.4747 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0159 (11) 0.0153 (9) 0.0139 (11) 0.0006 (7) 0.0050 (9) −0.0028 (7)
S1 0.0155 (3) 0.0206 (2) 0.0151 (3) 0.00181 (18) 0.0063 (2) 0.00292 (18)
N1 0.0143 (9) 0.0239 (8) 0.0117 (9) 0.0017 (6) 0.0048 (8) 0.0036 (7)
N2 0.0117 (9) 0.0228 (8) 0.0127 (9) 0.0001 (6) 0.0042 (8) 0.0017 (6)
C2 0.0181 (12) 0.0218 (10) 0.0136 (11) 0.0013 (8) 0.0058 (10) 0.0001 (8)
O1 0.0157 (9) 0.0441 (9) 0.0203 (9) 0.0027 (6) 0.0093 (8) 0.0103 (7)
C3 0.0135 (11) 0.0174 (9) 0.0143 (11) −0.0006 (7) 0.0037 (9) 0.0029 (7)
C4 0.0176 (12) 0.0175 (9) 0.0162 (11) −0.0011 (7) 0.0080 (10) 0.0005 (7)
C5 0.0143 (11) 0.0184 (9) 0.0237 (13) 0.0005 (7) 0.0096 (10) 0.0022 (8)
C6 0.0108 (11) 0.0175 (9) 0.0201 (12) −0.0010 (7) 0.0031 (9) 0.0052 (8)
C7 0.0180 (11) 0.0170 (9) 0.0142 (11) −0.0017 (7) 0.0054 (9) 0.0007 (7)
C8 0.0143 (11) 0.0161 (9) 0.0174 (11) 0.0009 (7) 0.0076 (9) 0.0011 (8)
Cl1 0.0205 (3) 0.0287 (3) 0.0170 (3) 0.00048 (19) 0.0092 (2) −0.00330 (19)
Cl2 0.0140 (3) 0.0281 (3) 0.0231 (3) 0.00175 (19) 0.0030 (2) 0.0041 (2)
Cl3 0.0202 (3) 0.0295 (3) 0.0133 (3) −0.00027 (19) 0.0038 (2) −0.00146 (19)
C9 0.0144 (11) 0.0167 (9) 0.0138 (11) 0.0013 (7) 0.0033 (9) −0.0008 (7)
C10 0.0217 (12) 0.0211 (10) 0.0182 (12) 0.0011 (8) 0.0091 (10) 0.0033 (8)
C11 0.0178 (12) 0.0298 (11) 0.0301 (14) 0.0022 (9) 0.0097 (11) 0.0056 (9)
C12 0.0176 (12) 0.0218 (10) 0.0213 (13) 0.0016 (8) −0.0007 (10) 0.0033 (8)
C13 0.0291 (14) 0.0337 (12) 0.0168 (13) 0.0025 (9) 0.0066 (11) 0.0055 (9)
C14 0.0193 (13) 0.0349 (11) 0.0214 (13) 0.0032 (9) 0.0093 (11) 0.0054 (9)

Geometric parameters (Å, °)

C1—N1 1.345 (3) C6—Cl2 1.727 (2)
C1—N2 1.386 (2) C7—C8 1.379 (3)
C1—S1 1.666 (2) C7—Cl3 1.723 (2)
N1—C3 1.410 (2) C8—H8 0.9300
N1—H1 0.8600 C9—C10 1.384 (3)
N2—C2 1.386 (3) C9—C14 1.391 (3)
N2—H2 0.8600 C10—C11 1.382 (3)
C2—O1 1.227 (3) C10—H10 0.9300
C2—C9 1.491 (3) C11—C12 1.382 (3)
C3—C8 1.391 (3) C11—H11 0.9300
C3—C4 1.394 (3) C12—C13 1.383 (3)
C4—C5 1.380 (3) C12—H12 0.9300
C4—Cl1 1.739 (2) C13—C14 1.379 (3)
C5—C6 1.386 (3) C13—H13 0.9300
C5—H5 0.9300 C14—H14 0.9300
C6—C7 1.394 (3)
N1—C1—N2 115.16 (18) C8—C7—C6 119.9 (2)
N1—C1—S1 125.47 (16) C8—C7—Cl3 118.89 (16)
N2—C1—S1 119.36 (15) C6—C7—Cl3 121.24 (17)
C1—N1—C3 124.74 (18) C7—C8—C3 121.12 (19)
C1—N1—H1 117.6 C7—C8—H8 119.4
C3—N1—H1 117.6 C3—C8—H8 119.4
C2—N2—C1 127.76 (18) C10—C9—C14 119.02 (19)
C2—N2—H2 116.1 C10—C9—C2 124.6 (2)
C1—N2—H2 116.1 C14—C9—C2 116.36 (19)
O1—C2—N2 121.4 (2) C11—C10—C9 120.1 (2)
O1—C2—C9 121.06 (19) C11—C10—H10 119.9
N2—C2—C9 117.51 (18) C9—C10—H10 119.9
C8—C3—C4 118.10 (19) C12—C11—C10 120.5 (2)
C8—C3—N1 121.05 (18) C12—C11—H11 119.7
C4—C3—N1 120.81 (19) C10—C11—H11 119.7
C5—C4—C3 121.5 (2) C11—C12—C13 119.8 (2)
C5—C4—Cl1 118.90 (16) C11—C12—H12 120.1
C3—C4—Cl1 119.63 (16) C13—C12—H12 120.1
C4—C5—C6 119.57 (19) C14—C13—C12 119.6 (2)
C4—C5—H5 120.2 C14—C13—H13 120.2
C6—C5—H5 120.2 C12—C13—H13 120.2
C5—C6—C7 119.82 (19) C13—C14—C9 120.9 (2)
C5—C6—Cl2 118.96 (16) C13—C14—H14 119.5
C7—C6—Cl2 121.20 (17) C9—C14—H14 119.5
N2—C1—N1—C3 −175.25 (16) C5—C6—C7—Cl3 178.95 (14)
S1—C1—N1—C3 6.3 (3) Cl2—C6—C7—Cl3 −2.6 (2)
N1—C1—N2—C2 1.7 (3) C6—C7—C8—C3 −1.9 (3)
S1—C1—N2—C2 −179.68 (15) Cl3—C7—C8—C3 178.94 (14)
C1—N2—C2—O1 −5.0 (3) C4—C3—C8—C7 2.9 (3)
C1—N2—C2—C9 175.03 (17) N1—C3—C8—C7 −179.55 (16)
C1—N1—C3—C8 49.5 (3) O1—C2—C9—C10 169.75 (18)
C1—N1—C3—C4 −133.0 (2) N2—C2—C9—C10 −10.3 (3)
C8—C3—C4—C5 −1.9 (3) O1—C2—C9—C14 −9.0 (3)
N1—C3—C4—C5 −179.45 (17) N2—C2—C9—C14 170.96 (17)
C8—C3—C4—Cl1 178.74 (14) C14—C9—C10—C11 0.4 (3)
N1—C3—C4—Cl1 1.2 (2) C2—C9—C10—C11 −178.33 (18)
C3—C4—C5—C6 −0.1 (3) C9—C10—C11—C12 −0.5 (3)
Cl1—C4—C5—C6 179.25 (14) C10—C11—C12—C13 0.1 (3)
C4—C5—C6—C7 1.2 (3) C11—C12—C13—C14 0.4 (3)
C4—C5—C6—Cl2 −177.30 (14) C12—C13—C14—C9 −0.6 (3)
C5—C6—C7—C8 −0.2 (3) C10—C9—C14—C13 0.2 (3)
Cl2—C6—C7—C8 178.26 (14) C2—C9—C14—C13 178.98 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.86 1.89 2.586 (2) 137.
N2—H2···S1i 0.86 2.83 3.6771 (19) 168.

Symmetry codes: (i) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2439).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  4. Baily, N., Dean, A. W., Judd, D. B., Middlemiss, D., Storer, R. & Watson, S. P. (1996). Bioorg. Med. Chem. Lett. 6, 1409–1413.
  5. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  6. Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218–224.
  7. Khawar Rauf, M., Bolte, M. & Badshah, A. (2009a). Acta Cryst. E65, o177. [DOI] [PMC free article] [PubMed]
  8. Khawar Rauf, M., Bolte, M. & Badshah, A. (2009b). Acta Cryst. E65, o240. [DOI] [PMC free article] [PubMed]
  9. Koch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488.
  10. Krishnamurthy, R., Govindaraghavan, S. & Narayanasamy, J. (1999). J. Pestic. Sci. 52, 145–151.
  11. Molecular Structure Corporation and Rigaku (2001). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  12. Molecular Structure Corporation and Rigaku (2004). TEXSAN MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  13. Murtaza, G., Ebihara, M., Said, M., Khawar Rauf, M. & Anwar, S. (2009a). Acta Cryst. E65, o2297–o2298. [DOI] [PMC free article] [PubMed]
  14. Murtaza, G., Hanif-Ur-Rehman, Khawar Rauf, M., Ebihara, M. & Badshah, A. (2009b). Acta Cryst. E65, o343. [DOI] [PMC free article] [PubMed]
  15. Namgun, L., Mi-Hyun, C. & Taek, H. K. (2001). J. Korean Chem. Soc. 45, 96–99.
  16. Patil, D. G. & Chedekel, M. R. (1984). J. Org. Chem. 49, 997–1000.
  17. Rigaku (1998). REQAB Rigaku Corporation, Tokyo, Japan.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Wegner, P., Hans, R., Frank, H. & Joppien, H. (1986). Eur. Patent No. 190611.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811052780/bg2439sup1.cif

e-68-0o119-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811052780/bg2439Isup2.hkl

e-68-0o119-Isup2.hkl (160.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811052780/bg2439Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES