Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Dec 14;68(Pt 1):o130. doi: 10.1107/S1600536811053013

2,4,5-Tris(pyridin-4-yl)-1H-imidazole monohydrate

Shen-Tang Wang a, Guang-Bo Che a, Chun-Bo Liu a,*, Xing Wang a, Ling Liu a
PMCID: PMC3254476  PMID: 22259418

Abstract

In the crystal structure of the title compound, C18H13N5·H2O, adjacent mol­ecules are linked by O—H⋯N and N—H⋯O hydrogen bonds, generating a chain propagating along [001].

Related literature

For the use of 2,4,5-tri(4-pyrid­yl)imidazole in the construction of metal-organic coordination polymers, see: Wang et al. (2009); Liang et al. (2009). For related structures, see: Jiang & Hou (2011); Li (2011); Li & Xia (2011). For the preparation, see: Proskurnina et al. (2002).graphic file with name e-68-0o130-scheme1.jpg

Experimental

Crystal data

  • C18H13N5·H2O

  • M r = 317.35

  • Triclinic, Inline graphic

  • a = 8.1510 (16) Å

  • b = 9.5210 (19) Å

  • c = 11.506 (2) Å

  • α = 103.80 (3)°

  • β = 105.64 (3)°

  • γ = 101.03 (3)°

  • V = 803.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.2 mm

Data collection

  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.970, T max = 1.000

  • 7510 measured reflections

  • 2912 independent reflections

  • 1792 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.125

  • S = 1.02

  • 2876 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811053013/zj2036sup1.cif

e-68-0o130-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811053013/zj2036Isup2.hkl

e-68-0o130-Isup2.hkl (138.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811053013/zj2036Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N5i 0.85 1.99 2.843 (3) 177
N1—H1⋯O1 0.89 1.85 2.741 (3) 176
O1—H1B⋯N4ii 0.85 1.94 2.787 (3) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Jiangsu University for supporting this work.

supplementary crystallographic information

Comment

In the 2,4,5-tri(4-pyridyl)imidazole three pyridyl groups (pyridyl ring B (C4-C8 and N3), C (C9-C13 and N4), D (C14-C18 and N5)) are directly connected with the imidazole ring A (C1-C3 , N1 and N2). The dihedral angles between the mean planes of pyridyl ring B and imidazole ring A, pyridyl ring C and imidazole ring A, and pyridyl ring D and imidazole ring A are 9.1 (7) °, 21.5 (5) °, 45.5 (1) °, respectively.

We report herein on the crystal structure of the title compound (Fig. 1). In the crystal lattice the molecules are linked by O—H···N and N—H···O hydrogen bonds (Jiang et al. 2011; Li et al. 2011; Li 2011) interactions to generate a one-dimensional double chain structure (Fig. 2).

Experimental

The 2,4,5-tri(4-pyridyl)imidazole was prepared by the methord reported in the literature (Proskurnina et al. 2002). A mixture of 2,4,5-tri(4-pyridyl)imidazole (0.030 g, 0.1 mmol), 2 drops of 1 mol/L HCl and water (10 mL) was placed in a 25 mL Teflon-lined autoclave and heated for 3 d at 433 K under autogenous pressure. Upon cooling and opening the bomb, colourless block-shaped crystals were obtained, then washed with water and dried in air.

Refinement

All H atoms on C atoms were positioned geometrically and refined as riding atoms, with (C—H = 0.93 Å) and refined as riding, with Uiso(H)= 1.2 Ueq(C). The hydrogen atoms of water molecules were located in a difference Fourier map, and were refined with suitable O—H distance restraint; Uiso = 1.5 Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. All H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The one-dimensional superamolecular structure linked by the hydrogen bonds.

Crystal data

C18H13N5·H2O Z = 2
Mr = 317.35 F(000) = 332
Triclinic, P1 Dx = 1.312 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.1510 (16) Å Cell parameters from 3107 reflections
b = 9.5210 (19) Å θ = 3.0–25.2°
c = 11.506 (2) Å µ = 0.09 mm1
α = 103.80 (3)° T = 293 K
β = 105.64 (3)° Prism, colourless
γ = 101.03 (3)° 0.35 × 0.25 × 0.2 mm
V = 803.3 (4) Å3

Data collection

Bruker SMART diffractometer 2912 independent reflections
Radiation source: fine-focus sealed tube 1792 reflections with I > 2σ(I)
graphite Rint = 0.040
ω scans θmax = 25.2°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −9→9
Tmin = 0.970, Tmax = 1.000 k = −11→11
7510 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0171P)2 + 0.605P] where P = (Fo2 + 2Fc2)/3
2876 reflections (Δ/σ)max < 0.001
218 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.2548 (3) 0.5006 (2) 0.26415 (19) 0.0544 (6)
H1 0.2800 0.5437 0.3469 0.082*
N2 0.1414 (3) 0.3416 (2) 0.06806 (19) 0.0542 (6)
N3 −0.0531 (4) 0.0012 (3) 0.3185 (2) 0.0738 (7)
N4 0.2559 (4) 0.5283 (3) −0.2901 (2) 0.0749 (7)
N5 0.5288 (4) 1.0560 (3) 0.3379 (3) 0.0764 (8)
C1 0.1603 (3) 0.3582 (3) 0.1895 (2) 0.0518 (6)
C2 0.2265 (3) 0.4798 (3) 0.0649 (2) 0.0523 (6)
C3 0.2960 (3) 0.5811 (3) 0.1858 (2) 0.0530 (7)
C4 0.0870 (3) 0.2404 (3) 0.2365 (2) 0.0520 (6)
C5 0.1271 (4) 0.2521 (3) 0.3637 (3) 0.0671 (8)
H5A 0.2026 0.3399 0.4252 0.080*
C6 0.0536 (4) 0.1317 (3) 0.3987 (3) 0.0739 (9)
H6A 0.0812 0.1433 0.4849 0.089*
C7 −0.0932 (4) −0.0074 (3) 0.1966 (3) 0.0754 (9)
H7A −0.1703 −0.0962 0.1374 0.091*
C8 −0.0284 (4) 0.1062 (3) 0.1517 (3) 0.0668 (8)
H8A −0.0621 0.0926 0.0650 0.080*
C9 0.2386 (3) 0.4986 (3) −0.0558 (2) 0.0527 (6)
C10 0.1214 (4) 0.4006 (3) −0.1700 (2) 0.0594 (7)
H10A 0.0342 0.3211 −0.1709 0.071*
C11 0.1334 (4) 0.4203 (3) −0.2821 (3) 0.0708 (8)
H11A 0.0505 0.3537 −0.3572 0.085*
C12 0.3716 (4) 0.6201 (4) −0.1801 (3) 0.0775 (9)
H12A 0.4600 0.6962 −0.1826 0.093*
C13 0.3698 (4) 0.6105 (3) −0.0626 (3) 0.0681 (8)
H13A 0.4552 0.6778 0.0110 0.082*
C14 0.3805 (4) 0.7431 (3) 0.2368 (2) 0.0549 (7)
C15 0.3141 (4) 0.8416 (3) 0.1767 (3) 0.0675 (8)
H15A 0.2185 0.8049 0.1015 0.081*
C16 0.3925 (4) 0.9939 (3) 0.2305 (3) 0.0754 (9)
H16A 0.3470 1.0577 0.1890 0.090*
C17 0.5915 (4) 0.9608 (3) 0.3939 (3) 0.0735 (9)
H17A 0.6879 1.0009 0.4685 0.088*
C18 0.5219 (4) 0.8055 (3) 0.3480 (3) 0.0650 (8)
H18A 0.5701 0.7446 0.3918 0.078*
O1 0.3155 (4) 0.6367 (2) 0.51602 (18) 0.1058 (10)
H1A 0.3597 0.7298 0.5581 0.159*
H1B 0.3044 0.5992 0.5745 0.159*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0703 (14) 0.0475 (12) 0.0430 (12) 0.0090 (10) 0.0198 (10) 0.0139 (9)
N2 0.0711 (15) 0.0475 (12) 0.0439 (12) 0.0088 (10) 0.0215 (11) 0.0167 (9)
N3 0.0983 (19) 0.0555 (14) 0.0683 (17) 0.0082 (13) 0.0323 (15) 0.0249 (13)
N4 0.102 (2) 0.0736 (16) 0.0558 (15) 0.0144 (15) 0.0375 (15) 0.0265 (13)
N5 0.0884 (19) 0.0549 (15) 0.0791 (18) 0.0055 (14) 0.0317 (16) 0.0152 (14)
C1 0.0689 (17) 0.0422 (13) 0.0430 (14) 0.0118 (12) 0.0187 (13) 0.0129 (11)
C2 0.0652 (16) 0.0482 (14) 0.0426 (14) 0.0091 (12) 0.0199 (12) 0.0153 (11)
C3 0.0660 (17) 0.0482 (14) 0.0446 (14) 0.0091 (12) 0.0201 (13) 0.0171 (11)
C4 0.0680 (17) 0.0428 (13) 0.0470 (15) 0.0122 (12) 0.0209 (13) 0.0174 (11)
C5 0.097 (2) 0.0510 (15) 0.0484 (16) 0.0064 (15) 0.0245 (15) 0.0162 (13)
C6 0.111 (3) 0.0599 (18) 0.0564 (18) 0.0163 (17) 0.0360 (18) 0.0236 (15)
C7 0.094 (2) 0.0519 (17) 0.068 (2) −0.0007 (15) 0.0184 (17) 0.0212 (15)
C8 0.088 (2) 0.0522 (16) 0.0527 (16) 0.0074 (15) 0.0191 (15) 0.0174 (13)
C9 0.0659 (17) 0.0511 (14) 0.0462 (14) 0.0145 (12) 0.0225 (13) 0.0204 (12)
C10 0.0738 (18) 0.0566 (16) 0.0473 (15) 0.0113 (14) 0.0228 (14) 0.0169 (13)
C11 0.090 (2) 0.0732 (19) 0.0474 (17) 0.0160 (17) 0.0259 (16) 0.0173 (14)
C12 0.097 (2) 0.071 (2) 0.068 (2) 0.0054 (17) 0.0402 (19) 0.0273 (17)
C13 0.079 (2) 0.0656 (18) 0.0517 (17) 0.0000 (15) 0.0251 (15) 0.0158 (14)
C14 0.0670 (17) 0.0486 (14) 0.0492 (15) 0.0082 (12) 0.0251 (13) 0.0148 (12)
C15 0.078 (2) 0.0519 (16) 0.0657 (19) 0.0083 (14) 0.0172 (16) 0.0212 (14)
C16 0.087 (2) 0.0536 (17) 0.086 (2) 0.0151 (16) 0.0285 (19) 0.0265 (16)
C17 0.080 (2) 0.0604 (18) 0.0624 (19) −0.0019 (16) 0.0216 (16) 0.0061 (15)
C18 0.077 (2) 0.0548 (16) 0.0552 (17) 0.0068 (14) 0.0185 (15) 0.0156 (13)
O1 0.187 (3) 0.0597 (13) 0.0500 (12) −0.0125 (14) 0.0451 (14) 0.0087 (10)

Geometric parameters (Å, °)

N1—C1 1.363 (3) C7—H7A 0.9300
N1—C3 1.381 (3) C8—H8A 0.9300
N1—H1 0.8907 C9—C10 1.381 (3)
N2—C1 1.331 (3) C9—C13 1.390 (3)
N2—C2 1.379 (3) C10—C11 1.373 (4)
N3—C6 1.326 (4) C10—H10A 0.9300
N3—C7 1.329 (4) C11—H11A 0.9300
N4—C11 1.329 (4) C12—C13 1.381 (4)
N4—C12 1.330 (4) C12—H12A 0.9300
N5—C16 1.330 (4) C13—H13A 0.9300
N5—C17 1.333 (4) C14—C18 1.378 (4)
C1—C4 1.454 (3) C14—C15 1.397 (4)
C2—C3 1.383 (3) C15—C16 1.378 (4)
C2—C9 1.469 (3) C15—H15A 0.9300
C3—C14 1.463 (3) C16—H16A 0.9300
C4—C5 1.383 (3) C17—C18 1.390 (4)
C4—C8 1.385 (3) C17—H17A 0.9300
C5—C6 1.387 (4) C18—H18A 0.9300
C5—H5A 0.9300 O1—H1A 0.8543
C6—H6A 0.9300 O1—H1B 0.8500
C7—C8 1.382 (4)
C1—N1—C3 107.5 (2) C10—C9—C13 116.4 (2)
C1—N1—H1 130.1 C10—C9—C2 120.8 (2)
C3—N1—H1 122.1 C13—C9—C2 122.8 (2)
C1—N2—C2 105.6 (2) C11—C10—C9 120.2 (3)
C6—N3—C7 115.0 (2) C11—C10—H10A 119.9
C11—N4—C12 115.6 (2) C9—C10—H10A 119.9
C16—N5—C17 116.0 (3) N4—C11—C10 124.1 (3)
N2—C1—N1 111.3 (2) N4—C11—H11A 117.9
N2—C1—C4 124.4 (2) C10—C11—H11A 117.9
N1—C1—C4 124.3 (2) N4—C12—C13 124.6 (3)
N2—C2—C3 110.2 (2) N4—C12—H12A 117.7
N2—C2—C9 119.8 (2) C13—C12—H12A 117.7
C3—C2—C9 130.0 (2) C12—C13—C9 119.1 (3)
N1—C3—C2 105.3 (2) C12—C13—H13A 120.5
N1—C3—C14 120.4 (2) C9—C13—H13A 120.5
C2—C3—C14 134.0 (2) C18—C14—C15 117.3 (2)
C5—C4—C8 116.3 (2) C18—C14—C3 122.0 (2)
C5—C4—C1 123.8 (2) C15—C14—C3 120.6 (2)
C8—C4—C1 119.9 (2) C16—C15—C14 118.9 (3)
C4—C5—C6 119.4 (3) C16—C15—H15A 120.5
C4—C5—H5A 120.3 C14—C15—H15A 120.5
C6—C5—H5A 120.3 N5—C16—C15 124.5 (3)
N3—C6—C5 124.9 (3) N5—C16—H16A 117.7
N3—C6—H6A 117.5 C15—C16—H16A 117.7
C5—C6—H6A 117.5 N5—C17—C18 124.1 (3)
N3—C7—C8 124.6 (3) N5—C17—H17A 117.9
N3—C7—H7A 117.7 C18—C17—H17A 117.9
C8—C7—H7A 117.7 C14—C18—C17 119.1 (3)
C7—C8—C4 119.7 (3) C14—C18—H18A 120.4
C7—C8—H8A 120.1 C17—C18—H18A 120.4
C4—C8—H8A 120.1 H1A—O1—H1B 100.9
C2—N2—C1—N1 −0.5 (3) N2—C2—C9—C10 21.5 (4)
C2—N2—C1—C4 178.6 (3) C3—C2—C9—C10 −161.6 (3)
C3—N1—C1—N2 1.3 (3) N2—C2—C9—C13 −156.1 (3)
C3—N1—C1—C4 −177.8 (3) C3—C2—C9—C13 20.8 (5)
C1—N2—C2—C3 −0.5 (3) C13—C9—C10—C11 −2.7 (4)
C1—N2—C2—C9 176.9 (2) C2—C9—C10—C11 179.5 (3)
C1—N1—C3—C2 −1.6 (3) C12—N4—C11—C10 0.2 (5)
C1—N1—C3—C14 173.1 (2) C9—C10—C11—N4 1.6 (5)
N2—C2—C3—N1 1.3 (3) C11—N4—C12—C13 −0.8 (5)
C9—C2—C3—N1 −175.8 (3) N4—C12—C13—C9 −0.5 (5)
N2—C2—C3—C14 −172.3 (3) C10—C9—C13—C12 2.2 (4)
C9—C2—C3—C14 10.6 (5) C2—C9—C13—C12 179.9 (3)
N2—C1—C4—C5 170.9 (3) N1—C3—C14—C18 45.8 (4)
N1—C1—C4—C5 −10.2 (4) C2—C3—C14—C18 −141.4 (3)
N2—C1—C4—C8 −8.3 (4) N1—C3—C14—C15 −131.1 (3)
N1—C1—C4—C8 170.7 (3) C2—C3—C14—C15 41.7 (5)
C8—C4—C5—C6 0.8 (4) C18—C14—C15—C16 0.2 (4)
C1—C4—C5—C6 −178.4 (3) C3—C14—C15—C16 177.3 (3)
C7—N3—C6—C5 −2.3 (5) C17—N5—C16—C15 0.7 (5)
C4—C5—C6—N3 1.1 (5) C14—C15—C16—N5 −0.3 (5)
C6—N3—C7—C8 1.7 (5) C16—N5—C17—C18 −0.9 (5)
N3—C7—C8—C4 0.1 (5) C15—C14—C18—C17 −0.4 (4)
C5—C4—C8—C7 −1.3 (4) C3—C14—C18—C17 −177.4 (3)
C1—C4—C8—C7 177.9 (3) N5—C17—C18—C14 0.8 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···N5i 0.85 1.99 2.843 (3) 177.
N1—H1···O1 0.89 1.85 2.741 (3) 176.
O1—H1B···N4ii 0.85 1.94 2.787 (3) 172.

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2036).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2002). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Jiang, Y.-K. & Hou, G.-G. (2011). Acta Cryst. E67, o3073. [DOI] [PMC free article] [PubMed]
  4. Li, H.-D. (2011). Acta Cryst. E67, o3156. [DOI] [PMC free article] [PubMed]
  5. Li, C.-R. & Xia, Z.-Q. (2011). Acta Cryst. E67, o2481. [DOI] [PMC free article] [PubMed]
  6. Liang, X.-Q., Zhou, X.-H., Chen, C., Xiao, H.-P., Li, Y.-Z., Zuo, J.-L. & You, X.-Z. (2009). Cryst. Growth Des 9, 1041–1053.
  7. Proskurnina, M. V., Lozinskaya, N. A., Tkachenko, S. E. & Zefirov, N. S. (2002). Russ. J Org Chem 38, 1149–1153.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Wang, L., Gu, W., Deng, J.-X., Liu, M.-L., Xu, N. & Liu, X. (2009). Z. Anorg. Allg. Chem, 635, 1124–1128.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811053013/zj2036sup1.cif

e-68-0o130-sup1.cif (19KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811053013/zj2036Isup2.hkl

e-68-0o130-Isup2.hkl (138.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811053013/zj2036Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES