Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Dec 17;68(Pt 1):o149–o150. doi: 10.1107/S1600536811053190

(2R)-8-Benzyl-2-[(S)-hy­droxy(phen­yl)meth­yl]-8-aza­bicyclo­[3.2.1]octan-3-one

Krzysztof Brzezinski a,*, Ryszard Lazny b, Michal Sienkiewicz b, Sławomir Wojtulewski b, Zbigniew Dauter a
PMCID: PMC3254493  PMID: 22259435

Abstract

The crystal of the title compound, C21H23NO2, was chosen from a conglomerate formed by a racemic mixture. An intra­molecular hydrogen bond is formed between hy­droxy group and heterocyclic N atom of the aza­bicyclo­[3.2.1]octan-3-one system. The crystal structure is stabilized by C—H⋯O inter­actions between aliphatic C—H groups and the carbonyl O atom. For the title chiral crystal, the highly redundant and accurate diffraction data set collected with low energy copper radiation gave a Flack parameter of 0.12 (18) for anomalous scattering effects originating from O atoms.

Related literature

For recent background literature on the chemistry of related tropane-derived aldols and their applications, including stereoselective syntheses of bioactive alkaloids, see: Lazny et al. (2011); Sienkiewicz et al. (2009) and references cited therein. For stereoselective syntheses of related nortropinone aldols, see: Lazny et al. (2001); Lazny & Nodzewska (2003). For a representative review of the biological activity of tropane derivatives, see: Singh (2000).graphic file with name e-68-0o149-scheme1.jpg

Experimental

Crystal data

  • C21H23NO2

  • M r = 321.40

  • Orthorhombic, Inline graphic

  • a = 5.9354 (1) Å

  • b = 13.3091 (2) Å

  • c = 22.1511 (3) Å

  • V = 1749.82 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.61 mm−1

  • T = 100 K

  • 0.65 × 0.25 × 0.19 mm

Data collection

  • Oxford Diffraction SuperNova Dual diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2011) T min = 0.75, T max = 0.89

  • 32829 measured reflections

  • 3323 independent reflections

  • 3276 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.070

  • S = 1.18

  • 3323 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983), 1257 Friedel pairs

  • Flack parameter: 0.12 (18)

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and pyMOL (DeLano, 2002); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811053190/gk2429sup1.cif

e-68-0o149-sup1.cif (24.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811053190/gk2429Isup2.hkl

e-68-0o149-Isup2.hkl (163KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811053190/gk2429Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9⋯N8 0.84 1.99 2.7280 (13) 146
C6—H6B⋯O3i 0.99 2.61 3.3414 (15) 131
C7—H7A⋯O3i 0.99 2.52 3.2954 (15) 135
C16—H16A⋯O3i 0.99 2.60 3.5846 (16) 173

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported in part by the University of Bialystok (BST-125), the Polish Ministry of Science and Higher Education (grant No. N N204 546939), the Intra­mural Research Program of the NIH, National Cancer Institute, Center for Cancer Research, and with Federal funds from the National Cancer Institute, National Institutes of Health, under contract HHSN2612008000001E.

supplementary crystallographic information

Comment

Tropane (8-methyl-8-azabicyclo[3.2.1]octane) and nortropane (8-azabicyclo[3.2.1]octane) are known scaffolds of numerous natural alkaloids, many of which demonstrate a range of biological activities. Many synthetic derivatives and unnatural analogues of tropane alkaloids have been synthesized and studied as potential agrochemically or pharmaceutically useful agents (Singh, 2000). Diastereomerically and enantimerically pure aldols of tropinone were used as key intermediates in stereoselective synthesis of unnatural enantiomer of cocaine (ent-cocaine), knightinol, alkaloid KD–B and ferrugine (Sienkiewicz et al., 2009). Stereoselective syntheses of nortropinone aldols (Lazny & Nodzewska, 2003; Lazny et al., 2001) is more complicated and remains a challenge. Therefore synthetically equivalent N-benzylnortropinone aldols may open a route to synthetic availability of nor-analogues of potential pharmaceutical importance. Knowledge of the structure and reactivity of the N-benzyl analogues of tropanes is also used for modeling reactivity of nortropanes anchored through nitrogen on commonly used solid-phase supports with benzyl derived linkers. The solid-phase immobilization and subsequent transformations are typically used in combinatorial approaches to preparation of libraries of potentially bioactive substances.

The studied N-benzyl compound was prepared by a procedure analogous to method known for N-methyl aldols. The synthetic procedure gave a racemic mixture, however homochiral crystals were formed spontaneously. An enantiomorphic crystal was picked at random.

The crystal structure of the title compound contains one molecule in the asymmetric unit (Fig. 1). The Flack parameter is equal to 0.12 (18) for the crystals containing (2R)-8-benzyl-2-[(S)-hydroxy(phenyl)methyl]-8-azabicyclo[3.2.1] octan-3-one enantiomer. The intramolecular hydrogen bond is formed between hydroxyl group and heterocyclic nitrogen atom from the azabicyclo[3.2.1]octan-3-one system. The carbonyl oxygen atom is located near equatorial hydrogen atoms of C6 and C7, as well as, the H16A atom. Intra- and intermolecular interactions are shown in Fig. 2 and summarized in Table 1.

Experimental

A solution of n-butyllithium in hexane (2.4 M, 0.50 ml, 1.2 mmol) was added dropwise to a cooled (273 K) solution of diisopropylamine (0.168 ml, 1.2 mmol) in tetrahydrofuran (10 ml). The mixture was stirred for 30 min, then cooled to 195 K and a solution of N-benzylnortropinone (0.215 g, 1 mmol) in tetrahydrofuran (7 ml) was added dropwise. After stirring for 2 h, benzaldehyde (0.117 ml, 1.15 mmol) was added dropwise and the mixture was stirred for another 10 min. The reaction was quenched with saturated aq. NH4Cl (4 ml), allowed to warm to room temperature, and extracted with dichloromethane (3 × 10 ml). The combined extracts were dried over MgSO4 and concentrated to give the crude product. Crystallization from mixed solvent system hexane/dichloromethane gave the the major product (0.243 g, 75%) as white crystals [m.p. 372–377 K; Rf = 0.77 (10% methanol/dichloromethane); HR (MS-ESI): MNa+, found 344,1640, C21H23NNaO2 requires 344,1626; 1H NMR (CDCl3): 7.43–7.21 (m, 10H), 5.11 (d, J = 3 Hz, 1H), 3.73–3.65 (m, 3H), 3.58–3.57 (m, 1H), 2.82 (ddd, J1 = 1.5 Hz, J2 = 4.5 Hz, J3 = 6 Hz, 1H), 2.45–2.44 (m, 1H), 2.36–2.32 (m, 3H), 1.70–1.66 (m, 2H)].

Refinement

All hydrogen atoms were constrained to idealized positions with C—H distances fixed at 0.95–1.00 Å and O—H distances fixed at 0.84 Å and Uiso(H) = 1.5Ueq(C) for hydroxyl hydrogen atom and 1.2Ueq(C) for others.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing viewed along the a axis. Dashed lines represent hydrogen bonds. For clarity, only hydrogen atoms involved in the intra- and intermolecular interactions are shown.

Crystal data

C21H23NO2 F(000) = 688
Mr = 321.40 Dx = 1.220 Mg m3
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2ac 2ab Cell parameters from 23874 reflections
a = 5.9354 (1) Å θ = 3.3–73.6°
b = 13.3091 (2) Å µ = 0.61 mm1
c = 22.1511 (3) Å T = 100 K
V = 1749.82 (5) Å3 Needle, colourless
Z = 4 0.65 × 0.25 × 0.19 mm

Data collection

Oxford Diffraction SuperNova Dual diffractometer 3323 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 3276 reflections with I > 2σ(I)
mirror Rint = 0.026
Detector resolution: 10.4052 pixels mm-1 θmax = 73.6°, θmin = 3.9°
ω scans h = −7→6
Absorption correction: analytical (CrysAlis PRO; Agilent, 2011) k = 0→16
Tmin = 0.75, Tmax = 0.89 l = 0→27
32829 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0283P)2 + 0.4297P] where P = (Fo2 + 2Fc2)/3
S = 1.18 (Δ/σ)max < 0.001
3323 reflections Δρmax = 0.16 e Å3
218 parameters Δρmin = −0.16 e Å3
0 restraints Absolute structure: Flack (1983), 1257 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.12 (18)

Special details

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8760 (2) 0.63105 (8) 0.16890 (5) 0.0158 (2)
H1 0.9172 0.6656 0.1304 0.019*
C2 0.8530 (2) 0.51680 (8) 0.15913 (5) 0.0153 (2)
H2 1.0031 0.4903 0.1462 0.018*
C3 0.7921 (2) 0.46720 (9) 0.21973 (5) 0.0169 (3)
O3 0.88275 (17) 0.38983 (7) 0.23623 (4) 0.0256 (2)
C4 0.6185 (2) 0.52123 (8) 0.25898 (5) 0.0177 (3)
H4A 0.6293 0.4967 0.3011 0.021*
H4B 0.4649 0.5066 0.2439 0.021*
C5 0.6612 (2) 0.63510 (8) 0.25734 (5) 0.0164 (2)
H5 0.5476 0.6719 0.2823 0.020*
C6 0.9079 (2) 0.65823 (10) 0.27939 (6) 0.0202 (3)
H6A 0.9603 0.6067 0.3084 0.024*
H6B 0.9166 0.7252 0.2987 0.024*
C7 1.0516 (2) 0.65523 (9) 0.21957 (6) 0.0204 (3)
H7A 1.1253 0.7208 0.2121 0.025*
H7B 1.1686 0.6024 0.2218 0.025*
N8 0.65350 (19) 0.66906 (7) 0.19242 (4) 0.0150 (2)
O9 0.45290 (16) 0.52672 (6) 0.12196 (4) 0.0204 (2)
H9 0.4614 0.5808 0.1414 0.031*
C9 0.6768 (2) 0.49154 (9) 0.10786 (5) 0.0165 (3)
H9C 0.7269 0.5263 0.0701 0.020*
C10 0.6686 (2) 0.38004 (9) 0.09495 (5) 0.0166 (3)
C11 0.8557 (3) 0.33441 (10) 0.06662 (5) 0.0210 (3)
H11 0.9814 0.3742 0.0551 0.025*
C12 0.8568 (3) 0.23166 (10) 0.05557 (6) 0.0238 (3)
H12 0.9833 0.2009 0.0369 0.029*
C13 0.6694 (3) 0.17393 (9) 0.07224 (6) 0.0241 (3)
H13 0.6699 0.1035 0.0652 0.029*
C14 0.4813 (3) 0.21910 (10) 0.09918 (6) 0.0226 (3)
H14 0.3537 0.1794 0.1093 0.027*
C15 0.4803 (2) 0.32179 (9) 0.11116 (5) 0.0196 (3)
H15 0.3539 0.3522 0.1301 0.023*
C16 0.6383 (2) 0.78046 (8) 0.19028 (5) 0.0171 (3)
H16A 0.7639 0.8098 0.2138 0.020*
H16B 0.4952 0.8022 0.2091 0.020*
C17 0.6486 (2) 0.81981 (8) 0.12530 (6) 0.0176 (3)
C18 0.4719 (3) 0.80051 (9) 0.08410 (6) 0.0212 (3)
H18 0.3449 0.7626 0.0969 0.025*
C19 0.4813 (3) 0.83679 (10) 0.02427 (6) 0.0252 (3)
H19 0.3614 0.8234 −0.0030 0.030*
C20 0.6690 (3) 0.89285 (10) 0.00518 (6) 0.0262 (3)
H20 0.6763 0.9177 −0.0350 0.031*
C21 0.8457 (3) 0.91194 (9) 0.04567 (6) 0.0265 (3)
H21 0.9729 0.9494 0.0326 0.032*
C22 0.8362 (3) 0.87590 (9) 0.10572 (6) 0.0227 (3)
H22 0.9564 0.8895 0.1328 0.027*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0150 (6) 0.0132 (5) 0.0194 (6) 0.0009 (5) 0.0025 (5) −0.0001 (4)
C2 0.0143 (6) 0.0129 (5) 0.0186 (5) 0.0017 (5) −0.0010 (5) −0.0008 (4)
C3 0.0174 (7) 0.0140 (5) 0.0192 (6) −0.0017 (5) −0.0041 (5) −0.0006 (5)
O3 0.0324 (6) 0.0175 (4) 0.0269 (5) 0.0076 (4) −0.0038 (4) 0.0032 (4)
C4 0.0197 (7) 0.0154 (5) 0.0178 (5) 0.0003 (5) 0.0000 (5) 0.0026 (4)
C5 0.0180 (7) 0.0157 (5) 0.0156 (5) 0.0014 (5) 0.0006 (5) −0.0002 (4)
C6 0.0210 (8) 0.0187 (6) 0.0207 (6) 0.0000 (5) −0.0046 (5) −0.0004 (5)
C7 0.0147 (7) 0.0183 (6) 0.0283 (7) 0.0003 (5) −0.0008 (5) −0.0043 (5)
N8 0.0169 (6) 0.0120 (4) 0.0160 (5) 0.0020 (4) 0.0010 (4) 0.0004 (4)
O9 0.0178 (5) 0.0165 (4) 0.0269 (5) 0.0037 (3) −0.0038 (4) −0.0048 (4)
C9 0.0179 (7) 0.0157 (5) 0.0159 (5) 0.0005 (5) 0.0003 (5) 0.0004 (4)
C10 0.0207 (7) 0.0166 (5) 0.0126 (5) 0.0006 (5) −0.0028 (5) −0.0009 (4)
C11 0.0220 (7) 0.0223 (6) 0.0187 (6) −0.0001 (5) 0.0002 (5) −0.0029 (5)
C12 0.0260 (8) 0.0246 (6) 0.0209 (6) 0.0072 (6) −0.0024 (6) −0.0065 (5)
C13 0.0371 (9) 0.0155 (6) 0.0196 (6) 0.0019 (6) −0.0052 (6) −0.0030 (5)
C14 0.0309 (8) 0.0194 (6) 0.0175 (6) −0.0055 (6) −0.0018 (6) 0.0006 (5)
C15 0.0228 (7) 0.0197 (6) 0.0162 (5) −0.0005 (5) 0.0008 (5) −0.0012 (5)
C16 0.0188 (7) 0.0118 (5) 0.0206 (6) 0.0014 (5) −0.0005 (5) −0.0013 (4)
C17 0.0194 (7) 0.0110 (5) 0.0224 (6) 0.0034 (5) 0.0025 (6) 0.0002 (4)
C18 0.0228 (8) 0.0171 (6) 0.0238 (6) 0.0003 (5) 0.0003 (5) 0.0034 (5)
C19 0.0302 (8) 0.0218 (6) 0.0235 (6) 0.0036 (6) −0.0033 (6) 0.0021 (5)
C20 0.0369 (9) 0.0192 (6) 0.0226 (6) 0.0066 (6) 0.0074 (6) 0.0049 (5)
C21 0.0261 (8) 0.0187 (6) 0.0347 (7) 0.0010 (6) 0.0113 (6) 0.0046 (5)
C22 0.0226 (8) 0.0153 (5) 0.0303 (7) 0.0009 (5) 0.0020 (6) 0.0007 (5)

Geometric parameters (Å, °)

C1—N8 1.5071 (16) C10—C15 1.4068 (19)
C1—C2 1.5419 (15) C10—C11 1.4127 (19)
C1—C7 1.5648 (18) C11—C12 1.3893 (18)
C1—H1 1.0000 C11—H11 0.9500
C2—C3 1.5390 (16) C12—C13 1.401 (2)
C2—C9 1.5801 (16) C12—H12 0.9500
C2—H2 1.0000 C13—C14 1.401 (2)
C3—O3 1.2180 (15) C13—H13 0.9500
C3—C4 1.5279 (18) C14—C15 1.3923 (17)
C4—C5 1.5368 (15) C14—H14 0.9500
C4—H4A 0.9900 C15—H15 0.9500
C4—H4B 0.9900 C16—C17 1.5329 (16)
C5—N8 1.5082 (14) C16—H16A 0.9900
C5—C6 1.5742 (18) C16—H16B 0.9900
C5—H5 1.0000 C17—C22 1.4091 (19)
C6—C7 1.5762 (18) C17—C18 1.4140 (19)
C6—H6A 0.9900 C18—C19 1.4116 (18)
C6—H6B 0.9900 C18—H18 0.9500
C7—H7A 0.9900 C19—C20 1.406 (2)
C7—H7B 0.9900 C19—H19 0.9500
N8—C16 1.4861 (14) C20—C21 1.403 (2)
O9—C9 1.4430 (16) C20—H20 0.9500
O9—H9 0.8400 C21—C22 1.4151 (19)
C9—C10 1.5121 (16) C21—H21 0.9500
C9—H9C 1.0000 C22—H22 0.9500
N8—C1—C2 107.58 (10) O9—C9—H9C 107.8
N8—C1—C7 105.46 (9) C10—C9—H9C 107.8
C2—C1—C7 111.25 (10) C2—C9—H9C 107.8
N8—C1—H1 110.8 C15—C10—C11 120.07 (11)
C2—C1—H1 110.8 C15—C10—C9 121.20 (12)
C7—C1—H1 110.8 C11—C10—C9 118.73 (12)
C3—C2—C1 108.74 (9) C12—C11—C10 120.33 (13)
C3—C2—C9 112.33 (10) C12—C11—H11 119.8
C1—C2—C9 111.67 (9) C10—C11—H11 119.8
C3—C2—H2 108.0 C11—C12—C13 119.32 (13)
C1—C2—H2 108.0 C11—C12—H12 120.3
C9—C2—H2 108.0 C13—C12—H12 120.3
O3—C3—C4 121.66 (11) C12—C13—C14 120.62 (11)
O3—C3—C2 121.38 (12) C12—C13—H13 119.7
C4—C3—C2 116.94 (10) C14—C13—H13 119.7
C3—C4—C5 109.85 (10) C15—C14—C13 120.37 (13)
C3—C4—H4A 109.7 C15—C14—H14 119.8
C5—C4—H4A 109.7 C13—C14—H14 119.8
C3—C4—H4B 109.7 C14—C15—C10 119.27 (13)
C5—C4—H4B 109.7 C14—C15—H15 120.4
H4A—C4—H4B 108.2 C10—C15—H15 120.4
N8—C5—C4 108.25 (9) N8—C16—C17 111.62 (9)
N8—C5—C6 105.38 (10) N8—C16—H16A 109.3
C4—C5—C6 109.80 (10) C17—C16—H16A 109.3
N8—C5—H5 111.1 N8—C16—H16B 109.3
C4—C5—H5 111.1 C17—C16—H16B 109.3
C6—C5—H5 111.1 H16A—C16—H16B 108.0
C5—C6—C7 103.74 (10) C22—C17—C18 118.94 (12)
C5—C6—H6A 111.0 C22—C17—C16 120.10 (12)
C7—C6—H6A 111.0 C18—C17—C16 120.96 (12)
C5—C6—H6B 111.0 C19—C18—C17 120.96 (13)
C7—C6—H6B 111.0 C19—C18—H18 119.5
H6A—C6—H6B 109.0 C17—C18—H18 119.5
C1—C7—C6 104.36 (10) C20—C19—C18 119.68 (13)
C1—C7—H7A 110.9 C20—C19—H19 120.2
C6—C7—H7A 110.9 C18—C19—H19 120.2
C1—C7—H7B 110.9 C21—C20—C19 119.74 (12)
C6—C7—H7B 110.9 C21—C20—H20 120.1
H7A—C7—H7B 108.9 C19—C20—H20 120.1
C16—N8—C1 112.14 (10) C20—C21—C22 120.66 (13)
C16—N8—C5 109.34 (9) C20—C21—H21 119.7
C1—N8—C5 101.69 (9) C22—C21—H21 119.7
C9—O9—H9 109.5 C17—C22—C21 120.02 (13)
O9—C9—C10 109.26 (11) C17—C22—H22 120.0
O9—C9—C2 112.65 (9) C21—C22—H22 120.0
C10—C9—C2 111.47 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O9—H9···N8 0.84 1.99 2.7280 (13) 146
C6—H6B···O3i 0.99 2.61 3.3414 (15) 131
C7—H7A···O3i 0.99 2.52 3.2954 (15) 135
C16—H16A···O3i 0.99 2.60 3.5846 (16) 173

Symmetry codes: (i) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2429).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. DeLano, W. L. (2002). The pyMOL Molecular Graphics System DeLano Scientific, San Carlos, CA, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Lazny, R. & Nodzewska, A. (2003). Tetrahedron Lett. 44, 2441–2444.
  6. Lazny, R., Nodzewska, A. & Tomczuk, I. (2011). Tetrahedron Lett. 52, 5680–5683.
  7. Lazny, R., Sienkiewicz, M. & Bräse, S. (2001). Tetrahedron, 57, 5825–5832.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sienkiewicz, M., Wilkaniec, U. & Lazny, R. (2009). Tetrahedron Lett. 50, 7196–7198.
  10. Singh, S. (2000). Chem. Rev. 100, 925–1024. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811053190/gk2429sup1.cif

e-68-0o149-sup1.cif (24.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811053190/gk2429Isup2.hkl

e-68-0o149-Isup2.hkl (163KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811053190/gk2429Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES