Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Dec 17;68(Pt 1):o156–o157. doi: 10.1107/S1600536811053682

Methyl (Z)-2-[(2,4-dioxothia­zolidin-3-yl)meth­yl]-3-(2-methyl­phen­yl)prop-2-enoate

S Vijayakumar a, S Murugavel b,*, D Kannan c, M Bakthadoss c,
PMCID: PMC3254499  PMID: 22259442

Abstract

The C=C bond in the title compound, C15H15NO4S, has a Z configuration. The thia­zolidine ring is essentially planar [maximum deviation = 0.008 (1) Å for the N atom] and is oriented at a dihedral angle of 59.1 (1)° with respect to the benzene ring. In the crystal, pairs of C—H⋯O hydrogen bonds link centrosymmetrically related mol­ecules into dimers, generating R 2 2(18) ring motifs. The crystal packing is further stabilized by C—H⋯π and C—O⋯π [O⋯centroid = 3.412 (2) Å and C—O⋯centroid = 115.0 (1)°] inter­actions.

Related literature

For the biolgical activity of thia­zolidine derivatives, see: Chen et al. (2000); Jacop & Kutty (2004); Kalia et al. (2007); Vicentini et al. (1998); Vigorita et al. (1992). For resonance effects of acrylate, see: Merlino (1971); Varghese et al. (1986). For closely related structures, see: Fun et al. (2009); Vennila et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-68-0o156-scheme1.jpg

Experimental

Crystal data

  • C15H15NO4S

  • M r = 305.34

  • Monoclinic, Inline graphic

  • a = 21.3744 (10) Å

  • b = 6.9762 (3) Å

  • c = 20.3084 (10) Å

  • β = 103.361 (2)°

  • V = 2946.3 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.26 × 0.23 × 0.18 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.941, T max = 0.959

  • 18757 measured reflections

  • 4354 independent reflections

  • 2966 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.135

  • S = 1.04

  • 4354 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811053682/bt5747sup1.cif

e-68-0o156-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811053682/bt5747Isup2.hkl

e-68-0o156-Isup2.hkl (209.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811053682/bt5747Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C7–C12 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.93 2.55 3.379 (2) 148
C9—H9⋯Cg1ii 0.93 2.90 3.677 (2) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

supplementary crystallographic information

Comment

Thiazolidine derivatives exhibit herbicidal (Chen et al., 2000; Vicentini et al., 1998), antineoplastic (Vigorita et al., 1992), hypolipidemic (Jacop & Kutty, 2004) and anti-inflammatory (Kalia et al., 2007) activities. In view of this importance, the crystal structure of the title compound has been carried out and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The molecules of the title compound display a Z– configuration about the C6═C5 double bond. The thiazolidine moiety (S1/N1/C1-C3) is essentially planar [maximum deviation = -0.008 (1) Å for the N1 atom] and lies at an angle 59.1 (1)° with respect to the benzene ring. The significant difference in length of the C13—O4 = 1.334 (2) Å and C14—O4 = 1.446 (2) Å bonds is attributed to a partial contribution from the O-–C = O+–C resonance structure of the O3═C13—O4—C14 group (Merlino, 1971). This feature, commonly observed in the carboxylic ester group of the substituents in various compounds gives average values of 1.340 Å and 1.447 Å respectively for these bonds (Varghese et al., 1986). The sum of bond angles around N1 (360°) indicates that N1 is in sp2 hybridization. The geometric parameters of the title molecule agrees well with those reported for similar structures (Fun et al., 2009, Vennila et al., 2011).

In the crystal packing (Fig. 2), the molecules at x, y, z and 1-x, y, 1/2-z are linked by C8—H8···O2 hydrogen bonds into cyclic centrosymmetric R22(18) dimers (Bernstein et al., 1995). The crystal packing is further stabilized by C—H···π and C—O···π interactions, the first one between a H9 atom and neighbouring benene ring (C7–C12), with a C9—H9···Cg1ii seperation of 2.90 Å (Fig. 3 and Table 1; Cg1 is the centroid of the C7–C12 benzene ring, Symmetry code as in Fig.3), and the second one between oxygen atom O1 and neighbouring thiazolidine ring (N1/S1/C1–C3), with a Ol···centroid(Cg2iii) distance of 3.412 (2) Å and a C1—O1···Cg2iii angle of 115.0 (1)° (Fig. 3; Cg2 is the centroid of the N1/S1/C1—C3 thiazolidine ring, Symmetry code as in Fig. 3).

Experimental

A solution of thiazolidine-2,4-dione (1 mmol, 0.117 g) and potassium carbonate (1.5 mmol, 0.207 g) in acetonitrile solvent was stirred for 15 minutes at room temperature. To this solution, (Z)-methyl-2 -(bromomethyl)-3-(2-methylphenyl)-prop-2-enoate (1 mmol, 0.269 g) was added dropwise till the addition is complete. After the completion of the reaction, as indicated by TLC, acetonitrile was evaporated. Ethyl acetate (15 ml) and water (15 ml) were added to the crude mass. The organic layer was dried over anhydrous sodium sulfate. Removal of solvent led to the crude product, which was purified through pad of silica gel (100–200 mesh) using ethylacetate and hexanes (1:9) as solvents. The pure title compound was obtained as a colourless solid (0.290 g, 95% yield). Recrystallization was carried out using ethylacetate as solvent.

Refinement

H atoms were positioned geometrically, with C—H = 0.93–0.97 Å and constrained to ride on their parent atom, with Uiso(H)=1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound showing C—H···O intermolecular hydrogen bonds (dotted lines) generating R22(18) centrosymmetric dimer. [Symmetry code: (i) 1-x, y, 1/2-z].

Fig. 3.

Fig. 3.

A view of the C—H···π (red dotted lines) and C—O···π (blue dotted lines) interactions, in the molecular structure of the title compound. Cg1 and Cg2 are the centroids of the (C7–C12) benzene ring and (N1/S1/C1–C3) thiazolidine ring, respectively. [Symmetry code: (ii) 3/2-x, 1/2+y, 1/2-z; (iii) 1-x, 2-y, -z.]

Crystal data

C15H15NO4S F(000) = 1280
Mr = 305.34 Dx = 1.377 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 4370 reflections
a = 21.3744 (10) Å θ = 2.0–30.2°
b = 6.9762 (3) Å µ = 0.23 mm1
c = 20.3084 (10) Å T = 293 K
β = 103.361 (2)° Block, colourless
V = 2946.3 (2) Å3 0.26 × 0.23 × 0.18 mm
Z = 8

Data collection

Bruker APEXII CCD diffractometer 4354 independent reflections
Radiation source: fine-focus sealed tube 2966 reflections with I > 2σ(I)
graphite Rint = 0.027
Detector resolution: 10.0 pixels mm-1 θmax = 30.2°, θmin = 2.0°
ω scans h = −29→30
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −9→8
Tmin = 0.941, Tmax = 0.959 l = −28→18
18757 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0612P)2 + 1.2153P] where P = (Fo2 + 2Fc2)/3
4354 reflections (Δ/σ)max < 0.001
192 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.34666 (2) 0.81404 (9) 0.02048 (3) 0.06438 (17)
N1 0.46454 (5) 0.81887 (16) 0.09106 (6) 0.0362 (3)
C4 0.51881 (7) 0.82904 (19) 0.14998 (8) 0.0383 (3)
H4A 0.5026 0.8529 0.1901 0.046*
H4B 0.5460 0.9364 0.1444 0.046*
C3 0.40174 (7) 0.8361 (2) 0.09848 (9) 0.0414 (3)
O4 0.46444 (5) 0.48419 (16) 0.16471 (7) 0.0588 (3)
C6 0.62202 (7) 0.6461 (2) 0.16616 (8) 0.0414 (3)
H6 0.6416 0.5262 0.1714 0.050*
C7 0.66451 (6) 0.8118 (2) 0.16498 (7) 0.0387 (3)
O2 0.38694 (6) 0.86509 (19) 0.15080 (7) 0.0583 (3)
C8 0.66505 (7) 0.9661 (2) 0.20808 (8) 0.0435 (3)
H8 0.6368 0.9677 0.2367 0.052*
O3 0.55140 (6) 0.30807 (16) 0.16562 (8) 0.0638 (4)
C13 0.52619 (7) 0.4616 (2) 0.16372 (8) 0.0432 (3)
C5 0.55872 (7) 0.64927 (19) 0.16051 (7) 0.0378 (3)
C1 0.47255 (8) 0.7930 (2) 0.02682 (8) 0.0473 (4)
O1 0.52437 (6) 0.7789 (2) 0.01315 (7) 0.0677 (4)
C12 0.70731 (7) 0.8089 (2) 0.12198 (9) 0.0463 (4)
C11 0.74813 (8) 0.9646 (3) 0.12352 (9) 0.0542 (4)
H11 0.7760 0.9662 0.0945 0.065*
C9 0.70709 (8) 1.1182 (3) 0.20911 (9) 0.0522 (4)
H9 0.7072 1.2207 0.2384 0.063*
C10 0.74848 (8) 1.1161 (3) 0.16660 (10) 0.0563 (4)
H10 0.7768 1.2176 0.1670 0.068*
C2 0.40897 (9) 0.7833 (4) −0.02463 (9) 0.0668 (6)
H2A 0.4044 0.6605 −0.0476 0.080*
H2B 0.4066 0.8838 −0.0581 0.080*
C14 0.42702 (10) 0.3104 (3) 0.16151 (13) 0.0740 (6)
H14A 0.4213 0.2544 0.1173 0.111*
H14B 0.3858 0.3400 0.1701 0.111*
H14C 0.4491 0.2214 0.1949 0.111*
C15 0.70806 (12) 0.6449 (3) 0.07429 (13) 0.0782 (7)
H15A 0.6691 0.6460 0.0394 0.117*
H15B 0.7112 0.5262 0.0987 0.117*
H15C 0.7443 0.6578 0.0542 0.117*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0359 (2) 0.0934 (4) 0.0619 (3) −0.0073 (2) 0.00745 (19) −0.0024 (3)
N1 0.0322 (6) 0.0367 (6) 0.0412 (6) −0.0031 (4) 0.0117 (5) 0.0009 (5)
C4 0.0378 (7) 0.0337 (7) 0.0434 (8) −0.0037 (5) 0.0092 (6) −0.0015 (6)
C3 0.0367 (7) 0.0370 (7) 0.0537 (9) −0.0041 (6) 0.0171 (6) −0.0012 (7)
O4 0.0437 (6) 0.0390 (6) 0.0968 (10) −0.0075 (5) 0.0228 (6) 0.0094 (6)
C6 0.0419 (8) 0.0363 (7) 0.0463 (8) 0.0011 (6) 0.0110 (6) 0.0068 (6)
C7 0.0307 (6) 0.0412 (7) 0.0425 (7) 0.0006 (5) 0.0049 (5) 0.0076 (6)
O2 0.0509 (7) 0.0672 (8) 0.0649 (8) −0.0050 (6) 0.0300 (6) −0.0141 (6)
C8 0.0352 (7) 0.0517 (9) 0.0421 (8) −0.0012 (6) 0.0057 (6) 0.0007 (7)
O3 0.0621 (8) 0.0351 (6) 0.0998 (11) 0.0017 (5) 0.0304 (7) 0.0084 (6)
C13 0.0463 (8) 0.0347 (7) 0.0505 (9) −0.0031 (6) 0.0150 (7) 0.0036 (7)
C5 0.0394 (7) 0.0338 (7) 0.0413 (7) −0.0034 (5) 0.0114 (6) 0.0031 (6)
C1 0.0422 (8) 0.0594 (10) 0.0431 (8) −0.0062 (7) 0.0154 (6) 0.0020 (8)
O1 0.0476 (7) 0.1061 (11) 0.0566 (7) −0.0012 (7) 0.0266 (6) 0.0016 (8)
C12 0.0402 (8) 0.0503 (9) 0.0498 (9) −0.0006 (6) 0.0135 (6) 0.0031 (7)
C11 0.0370 (8) 0.0683 (11) 0.0586 (10) −0.0074 (7) 0.0141 (7) 0.0107 (9)
C9 0.0434 (8) 0.0533 (9) 0.0537 (10) −0.0066 (7) −0.0016 (7) −0.0059 (8)
C10 0.0410 (9) 0.0574 (10) 0.0656 (11) −0.0153 (7) 0.0025 (8) 0.0059 (9)
C2 0.0475 (10) 0.1065 (16) 0.0468 (9) −0.0154 (10) 0.0116 (8) −0.0008 (10)
C14 0.0562 (11) 0.0524 (10) 0.1121 (18) −0.0215 (9) 0.0171 (11) 0.0127 (11)
C15 0.0886 (16) 0.0700 (13) 0.0914 (16) −0.0096 (11) 0.0524 (13) −0.0158 (12)

Geometric parameters (Å, °)

S1—C3 1.7485 (17) C13—C5 1.4911 (19)
S1—C2 1.7953 (19) C1—O1 1.2064 (19)
N1—C1 1.3665 (19) C1—C2 1.512 (2)
N1—C3 1.3901 (18) C12—C11 1.389 (2)
N1—C4 1.4631 (18) C12—C15 1.501 (3)
C4—C5 1.504 (2) C11—C10 1.371 (3)
C4—H4A 0.9700 C11—H11 0.9300
C4—H4B 0.9700 C9—C10 1.371 (3)
C3—O2 1.1939 (19) C9—H9 0.9300
O4—C13 1.3342 (18) C10—H10 0.9300
O4—C14 1.4457 (19) C2—H2A 0.9700
C6—C5 1.331 (2) C2—H2B 0.9700
C6—C7 1.474 (2) C14—H14A 0.9600
C6—H6 0.9300 C14—H14B 0.9600
C7—C8 1.386 (2) C14—H14C 0.9600
C7—C12 1.403 (2) C15—H15A 0.9600
C8—C9 1.387 (2) C15—H15B 0.9600
C8—H8 0.9300 C15—H15C 0.9600
O3—C13 1.1953 (18)
C3—S1—C2 92.82 (8) N1—C1—C2 112.00 (13)
C1—N1—C3 116.89 (13) C11—C12—C7 118.10 (16)
C1—N1—C4 122.45 (12) C11—C12—C15 120.67 (16)
C3—N1—C4 120.67 (12) C7—C12—C15 121.21 (15)
N1—C4—C5 113.10 (12) C10—C11—C12 121.87 (16)
N1—C4—H4A 109.0 C10—C11—H11 119.1
C5—C4—H4A 109.0 C12—C11—H11 119.1
N1—C4—H4B 109.0 C10—C9—C8 119.50 (16)
C5—C4—H4B 109.0 C10—C9—H9 120.3
H4A—C4—H4B 107.8 C8—C9—H9 120.3
O2—C3—N1 124.91 (15) C11—C10—C9 120.04 (15)
O2—C3—S1 124.04 (12) C11—C10—H10 120.0
N1—C3—S1 111.04 (11) C9—C10—H10 120.0
C13—O4—C14 116.05 (14) C1—C2—S1 107.24 (12)
C5—C6—C7 127.12 (13) C1—C2—H2A 110.3
C5—C6—H6 116.4 S1—C2—H2A 110.3
C7—C6—H6 116.4 C1—C2—H2B 110.3
C8—C7—C12 119.52 (14) S1—C2—H2B 110.3
C8—C7—C6 120.94 (14) H2A—C2—H2B 108.5
C12—C7—C6 119.46 (14) O4—C14—H14A 109.5
C7—C8—C9 120.95 (15) O4—C14—H14B 109.5
C7—C8—H8 119.5 H14A—C14—H14B 109.5
C9—C8—H8 119.5 O4—C14—H14C 109.5
O3—C13—O4 123.06 (14) H14A—C14—H14C 109.5
O3—C13—C5 125.24 (14) H14B—C14—H14C 109.5
O4—C13—C5 111.70 (12) C12—C15—H15A 109.5
C6—C5—C13 117.15 (13) C12—C15—H15B 109.5
C6—C5—C4 123.91 (13) H15A—C15—H15B 109.5
C13—C5—C4 118.92 (12) C12—C15—H15C 109.5
O1—C1—N1 123.70 (15) H15A—C15—H15C 109.5
O1—C1—C2 124.30 (15) H15B—C15—H15C 109.5
C1—N1—C4—C5 −60.93 (18) O4—C13—C5—C4 −7.7 (2)
C3—N1—C4—C5 119.28 (14) N1—C4—C5—C6 125.99 (15)
C1—N1—C3—O2 −177.60 (15) N1—C4—C5—C13 −52.85 (18)
C4—N1—C3—O2 2.2 (2) C3—N1—C1—O1 178.80 (16)
C1—N1—C3—S1 1.36 (16) C4—N1—C1—O1 −1.0 (2)
C4—N1—C3—S1 −178.84 (10) C3—N1—C1—C2 −1.4 (2)
C2—S1—C3—O2 178.29 (16) C4—N1—C1—C2 178.78 (15)
C2—S1—C3—N1 −0.68 (13) C8—C7—C12—C11 −1.2 (2)
C5—C6—C7—C8 53.3 (2) C6—C7—C12—C11 −178.06 (14)
C5—C6—C7—C12 −129.92 (17) C8—C7—C12—C15 −179.69 (17)
C12—C7—C8—C9 0.3 (2) C6—C7—C12—C15 3.5 (2)
C6—C7—C8—C9 177.09 (14) C7—C12—C11—C10 1.6 (3)
C14—O4—C13—O3 −5.9 (3) C15—C12—C11—C10 −179.94 (19)
C14—O4—C13—C5 174.51 (16) C7—C8—C9—C10 0.3 (2)
C7—C6—C5—C13 −179.58 (15) C12—C11—C10—C9 −1.0 (3)
C7—C6—C5—C4 1.6 (3) C8—C9—C10—C11 0.0 (3)
O3—C13—C5—C6 −6.2 (3) O1—C1—C2—S1 −179.42 (16)
O4—C13—C5—C6 173.39 (14) N1—C1—C2—S1 0.8 (2)
O3—C13—C5—C4 172.74 (17) C3—S1—C2—C1 −0.06 (15)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 benzene ring.
D—H···A D—H H···A D···A D—H···A
C8—H8···O2i 0.93 2.55 3.379 (2) 148.
C9—H9···Cg1ii 0.93 2.90 3.677 (2) 142

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) x+1, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5747).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
  2. Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem. 48, 5312–5315. [DOI] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Fun, H.-K., Goh, J. H., Vinayaka, A. C. & Kalluraya, B. (2009). Acta Cryst. E65, o2094. [DOI] [PMC free article] [PubMed]
  6. Jacop, J. & Kutty, G. N. (2004). Indian Drugs, 41, 76–79.
  7. Kalia, R., Rao, C. M. & Kutty, N. G. (2007). Arzneim. Forsch. (Drug Res.), 57, 616–622. [DOI] [PubMed]
  8. Merlino, S. (1971). Acta Cryst. B27, 2491–2492.
  9. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Varghese, B., Srinivasan, S., Padmanabhan, P. V. & Ramadas, S. R. (1986). Acta Cryst. C42, 1544–1546.
  13. Vennila, J. P., Thiruvadigal, D. J., Kavitha, H. P., Chakkaravarthi, G. & Manivannan, V. (2011). Acta Cryst. E67, o1902. [DOI] [PMC free article] [PubMed]
  14. Vicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem. 35, 29–36.
  15. Vigorita, M. G., Basile, M., Zappala, C., Gabbrielli, G. & Pizzimenti, F. (1992). Farmaco, 47, 893–906. [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811053682/bt5747sup1.cif

e-68-0o156-sup1.cif (18.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811053682/bt5747Isup2.hkl

e-68-0o156-Isup2.hkl (209.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811053682/bt5747Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES