Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Dec 21;68(Pt 1):o199–o200. doi: 10.1107/S1600536811054080

(E)-1-[2-(Methyl­sulfan­yl)phen­yl]-2-({(E)-2-[2-(methyl­sulfan­yl)phen­yl]hydrazinyl­idene}(nitro)­meth­yl)diazene

Karel G von Eschwege a,*, Fabian Muller a, Eric C Hosten b
PMCID: PMC3254534  PMID: 22259480

Abstract

In the title compound, C15H15N5O2S2, the phenyl rings make dihedral angles of 4.03 (4) and 9.77 (5)° with the plane defined by the central N—N—C—N—N atoms (r.m.s. deviation = 0.010 Å). The C—S—C—C torsion angles of the methyl­sulfanyl groups with their respective phenyl rings are −7.47 (13) and −72.07 (13)°. The shortest centroid–centroid distance of 3.707 Å occurs between the two π-systems N—N—C—N—N and the benzene ring in the diazene 1-position. The H atom bound to the N atom is involved in intra­molecular N—H⋯N and N—H⋯S contacts, while the nitro O atoms are involved in inter­molecular C—H⋯O contacts.

Related literature

For the chemistry of dithizone, see: Irving (1977). For related structures, see: Laing (1977); Mito et al. (1997); Gilroy et al. (2008). For the synthesis of nitro­formazans, see: Pelkis et al. (1957). For DFT and electrochemistry studies of dithizone, see: von Eschwege & Swarts (2010); von Eschwege, Conradie & Kuhn (2011).graphic file with name e-68-0o199-scheme1.jpg

Experimental

Crystal data

  • C15H15N5O2S2

  • M r = 361.44

  • Monoclinic, Inline graphic

  • a = 4.7283 (2) Å

  • b = 17.9791 (10) Å

  • c = 19.3865 (8) Å

  • β = 103.646 (2)°

  • V = 1601.54 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 200 K

  • 0.79 × 0.21 × 0.07 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.870, T max = 1.000

  • 14965 measured reflections

  • 3960 independent reflections

  • 3301 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.086

  • S = 1.04

  • 3960 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811054080/zq2147sup1.cif

e-68-0o199-sup1.cif (25.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811054080/zq2147Isup2.hkl

e-68-0o199-Isup2.hkl (194.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811054080/zq2147Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯S2 0.88 2.60 3.0248 (13) 110
N4—H4⋯N1 0.88 1.99 2.6229 (16) 128
C2—H2B⋯O1i 0.98 2.36 3.253 (2) 151
C25—H25⋯O2ii 0.95 2.45 3.1901 (19) 134

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The research funds of the University of the Free State, the Nelson Mandela Metropolitan University and the National Research Foundation are gratefully acknowledged.

supplementary crystallographic information

Comment

During the synthesis of the versatile trace metal analysis dithizone reagent, aniline is first diazotized and then treated with nitromethane to form the bright orange-red nitroformazan product (Pelkis et al., 1957). Ammonia and hydrogen sulfide gas are used to substitute the nitro group with sulfur towards the formation of dithizone, the chemistry of which is extensively described in the literature (Irving, 1977). Single crystal X-ray structures of nitroformazan derivatives were determined by Gilroy et al. (2008), Mito et al. (1997) and the dithizone structure by Laing (1977), while we performed extensive DFT (von Eschwege et al., 2011) and electrochemistry studies (von Eschwege & Swarts, 2010) on the free ligand.

We recently embarked on a study during which we synthesized a series of electronically altered dithizones for the purpose of investigating its altered redox and structural properties. During this process, crystals of the title compound, suitable for X-ray crystallography, were grown from an acetone solution overlaid with n-hexane.

The least square planes defined by the phenyl rings with respect to the plane defined by the N1, N2, C3, N3 and N4 atoms enclose dihedral angles of 9.77 (5)° and 4.03 (4)° (Fig. 1). The torsion angles of the S-methyl groups with their respective phenyl rings are 7.47 (13)° and 72.07 (13)°. The shortest centroid-centroid distance of 3.707 Å occurs between the two π-systems N1—N2—C3—N3—N4 and C11—C12—C13—C14—C15—C16. The H atom bound to N4 is involved in intramolecular N—H···N and N—H···S contacts while the nitro O atoms have intermolecular C—H···O contacts (Fig. 2). The packing of the title compound in the crystal is shown in Figure 3.

Experimental

Solvents (AR) purchased from Merck and reagents from Sigma-Aldrich were used without further purification. The ortho-S-methyl derivative of nitroformazan was prepared according to the procedure reported by Pelkis et al. (1957). M.p. 144 °C. λmax (dichloromethane) 320, 479 nm. δH (600 MHz, CDCl3) 14.76 (1 H, 1 × s, 1 × NH), 2.50 (6 H, 1 × s, 2 × SCH3), 8.03 – 7.34 (8 H, 3 × m, 2 × C6H4)

Refinement

All hydrogen positions were calculated after each cycle of refinement using a riding model, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, with N—H = 0.88 Å and Uiso(H) = 1.2Ueq(N), and with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms. The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density [HFIX 137 in SHELXL97 (Sheldrick, 2008)].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and anistropic displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Inter- and intramolecular contacts in the crystal structure of the title compound (ellipsoids drawn at the 50% probability level). Symmetry operators: (i) = -x, y + 1/2, -z + 1/2; (ii) = -x + 2, -y, -z + 1.

Fig. 3.

Fig. 3.

Molecular packing of the title compound (anistropic displacement ellipsoids drawn at 50% probability level).

Crystal data

C15H15N5O2S2 F(000) = 752
Mr = 361.44 Dx = 1.499 Mg m3
Monoclinic, P21/c Melting point: 417 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 4.7283 (2) Å Cell parameters from 8473 reflections
b = 17.9791 (10) Å θ = 2.3–28.3°
c = 19.3865 (8) Å µ = 0.35 mm1
β = 103.646 (2)° T = 200 K
V = 1601.54 (13) Å3 Platelet, red
Z = 4 0.79 × 0.21 × 0.07 mm

Data collection

Bruker APEXII CCD diffractometer 3960 independent reflections
Radiation source: sealed tube 3301 reflections with I > 2σ(I)
graphite Rint = 0.019
φ and ω scans θmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −6→5
Tmin = 0.870, Tmax = 1.000 k = −23→23
14965 measured reflections l = −25→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0396P)2 + 0.7279P] where P = (Fo2 + 2Fc2)/3
3960 reflections (Δ/σ)max < 0.001
219 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.33810 (7) −0.05295 (2) 0.125542 (19) 0.02859 (10)
S2 0.10204 (8) 0.22354 (2) 0.39420 (2) 0.03395 (11)
O1 0.2660 (3) −0.13599 (7) 0.23524 (7) 0.0451 (3)
O2 0.6661 (3) −0.11093 (7) 0.31138 (6) 0.0419 (3)
N1 −0.0436 (2) 0.06137 (7) 0.24775 (6) 0.0261 (2)
N2 0.0632 (2) −0.00197 (7) 0.23768 (6) 0.0254 (2)
N3 0.4414 (3) 0.00974 (7) 0.34898 (6) 0.0262 (2)
N4 0.3493 (3) 0.07389 (7) 0.36783 (6) 0.0275 (3)
H4 0.2011 0.0966 0.3397 0.033*
N5 0.4207 (3) −0.09471 (7) 0.27813 (6) 0.0288 (3)
C1 −0.6361 (3) −0.08689 (10) 0.05684 (8) 0.0368 (3)
H1A −0.8170 −0.0839 0.0731 0.055*
H1B −0.5993 −0.1387 0.0460 0.055*
H1C −0.6541 −0.0565 0.0141 0.055*
C2 0.2794 (4) 0.25326 (9) 0.32603 (9) 0.0364 (3)
H2A 0.4660 0.2766 0.3481 0.055*
H2B 0.1553 0.2892 0.2948 0.055*
H2C 0.3132 0.2101 0.2982 0.055*
C3 0.3021 (3) −0.02142 (8) 0.29019 (7) 0.0244 (3)
C11 −0.2889 (3) 0.08284 (8) 0.19544 (7) 0.0242 (3)
C12 −0.4468 (3) 0.03812 (8) 0.13894 (7) 0.0241 (3)
C13 −0.6941 (3) 0.07045 (9) 0.09478 (8) 0.0292 (3)
H13 −0.8071 0.0420 0.0569 0.035*
C14 −0.7781 (3) 0.14243 (9) 0.10470 (8) 0.0326 (3)
H14 −0.9475 0.1623 0.0737 0.039*
C15 −0.6196 (3) 0.18619 (9) 0.15909 (8) 0.0321 (3)
H15 −0.6756 0.2361 0.1650 0.039*
C16 −0.3795 (3) 0.15564 (8) 0.20428 (8) 0.0292 (3)
H16 −0.2721 0.1847 0.2425 0.035*
C21 0.4883 (3) 0.10600 (8) 0.43295 (7) 0.0259 (3)
C22 0.3908 (3) 0.17503 (8) 0.45127 (7) 0.0264 (3)
C23 0.5239 (3) 0.20576 (9) 0.51675 (8) 0.0328 (3)
H23 0.4580 0.2523 0.5301 0.039*
C24 0.7501 (4) 0.16978 (10) 0.56265 (8) 0.0364 (3)
H24 0.8379 0.1913 0.6073 0.044*
C25 0.8481 (4) 0.10248 (10) 0.54336 (9) 0.0400 (4)
H25 1.0057 0.0780 0.5746 0.048*
C26 0.7182 (4) 0.07032 (9) 0.47872 (8) 0.0371 (4)
H26 0.7863 0.0239 0.4657 0.045*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.02626 (18) 0.02805 (19) 0.02859 (18) −0.00116 (13) 0.00074 (13) −0.00361 (13)
S2 0.02892 (19) 0.0374 (2) 0.0351 (2) 0.01037 (15) 0.00660 (14) −0.00065 (15)
O1 0.0362 (6) 0.0348 (6) 0.0586 (8) −0.0037 (5) −0.0001 (5) −0.0214 (6)
O2 0.0419 (6) 0.0366 (6) 0.0381 (6) 0.0139 (5) −0.0090 (5) −0.0063 (5)
N1 0.0245 (6) 0.0282 (6) 0.0231 (5) −0.0008 (4) 0.0008 (4) 0.0003 (5)
N2 0.0238 (5) 0.0268 (6) 0.0234 (5) −0.0031 (4) 0.0017 (4) 0.0001 (4)
N3 0.0288 (6) 0.0227 (6) 0.0240 (5) 0.0000 (4) 0.0003 (4) −0.0006 (4)
N4 0.0288 (6) 0.0243 (6) 0.0244 (6) 0.0029 (5) −0.0037 (4) −0.0018 (5)
N5 0.0322 (6) 0.0251 (6) 0.0273 (6) −0.0010 (5) 0.0034 (5) −0.0023 (5)
C1 0.0343 (8) 0.0377 (9) 0.0340 (8) −0.0035 (6) −0.0008 (6) −0.0093 (7)
C2 0.0401 (8) 0.0297 (8) 0.0382 (8) 0.0071 (6) 0.0068 (7) 0.0080 (6)
C3 0.0261 (6) 0.0221 (7) 0.0235 (6) −0.0010 (5) 0.0024 (5) −0.0001 (5)
C11 0.0214 (6) 0.0281 (7) 0.0217 (6) −0.0020 (5) 0.0026 (5) 0.0018 (5)
C12 0.0225 (6) 0.0274 (7) 0.0223 (6) −0.0025 (5) 0.0052 (5) 0.0011 (5)
C13 0.0251 (7) 0.0344 (8) 0.0249 (6) −0.0026 (5) −0.0003 (5) 0.0013 (6)
C14 0.0286 (7) 0.0358 (8) 0.0302 (7) 0.0039 (6) 0.0006 (5) 0.0066 (6)
C15 0.0333 (8) 0.0290 (8) 0.0330 (7) 0.0043 (6) 0.0056 (6) 0.0028 (6)
C16 0.0294 (7) 0.0298 (8) 0.0266 (6) −0.0012 (6) 0.0032 (5) −0.0025 (6)
C21 0.0263 (7) 0.0252 (7) 0.0235 (6) −0.0021 (5) 0.0003 (5) −0.0014 (5)
C22 0.0265 (7) 0.0278 (7) 0.0248 (6) −0.0009 (5) 0.0057 (5) −0.0001 (5)
C23 0.0393 (8) 0.0304 (8) 0.0295 (7) −0.0020 (6) 0.0098 (6) −0.0060 (6)
C24 0.0430 (9) 0.0376 (9) 0.0248 (7) −0.0078 (7) 0.0002 (6) −0.0059 (6)
C25 0.0422 (9) 0.0386 (9) 0.0303 (7) 0.0031 (7) −0.0090 (6) −0.0022 (7)
C26 0.0413 (8) 0.0301 (8) 0.0316 (8) 0.0070 (6) −0.0080 (6) −0.0051 (6)

Geometric parameters (Å, °)

S1—C12 1.7538 (15) C11—C16 1.400 (2)
S1—C1 1.8018 (15) C11—C12 1.4205 (18)
S2—C22 1.7710 (14) C12—C13 1.4018 (19)
S2—C2 1.8050 (17) C13—C14 1.381 (2)
O1—N5 1.2208 (16) C13—H13 0.9500
O2—N5 1.2226 (16) C14—C15 1.385 (2)
N1—N2 1.2793 (17) C14—H14 0.9500
N1—C11 1.4028 (17) C15—C16 1.374 (2)
N2—C3 1.3754 (17) C15—H15 0.9500
N3—C3 1.3009 (17) C16—H16 0.9500
N3—N4 1.3148 (17) C21—C26 1.387 (2)
N4—C21 1.4029 (17) C21—C22 1.399 (2)
N4—H4 0.8800 C22—C23 1.391 (2)
N5—C3 1.4720 (18) C23—C24 1.380 (2)
C1—H1A 0.9800 C23—H23 0.9500
C1—H1B 0.9800 C24—C25 1.379 (2)
C1—H1C 0.9800 C24—H24 0.9500
C2—H2A 0.9800 C25—C26 1.385 (2)
C2—H2B 0.9800 C25—H25 0.9500
C2—H2C 0.9800 C26—H26 0.9500
C12—S1—C1 102.72 (7) C11—C12—S1 121.56 (10)
C22—S2—C2 100.39 (7) C14—C13—C12 121.98 (13)
N2—N1—C11 115.05 (11) C14—C13—H13 119.0
N1—N2—C3 113.46 (11) C12—C13—H13 119.0
C3—N3—N4 119.26 (12) C13—C14—C15 121.09 (14)
N3—N4—C21 119.70 (11) C13—C14—H14 119.5
N3—N4—H4 120.1 C15—C14—H14 119.5
C21—N4—H4 120.1 C16—C15—C14 118.39 (14)
O1—N5—O2 123.76 (13) C16—C15—H15 120.8
O1—N5—C3 117.59 (12) C14—C15—H15 120.8
O2—N5—C3 118.65 (11) C15—C16—C11 121.74 (13)
S1—C1—H1A 109.5 C15—C16—H16 119.1
S1—C1—H1B 109.5 C11—C16—H16 119.1
H1A—C1—H1B 109.5 C26—C21—C22 120.22 (13)
S1—C1—H1C 109.5 C26—C21—N4 121.02 (13)
H1A—C1—H1C 109.5 C22—C21—N4 118.76 (12)
H1B—C1—H1C 109.5 C23—C22—C21 118.61 (13)
S2—C2—H2A 109.5 C23—C22—S2 119.38 (12)
S2—C2—H2B 109.5 C21—C22—S2 122.01 (10)
H2A—C2—H2B 109.5 C24—C23—C22 121.13 (14)
S2—C2—H2C 109.5 C24—C23—H23 119.4
H2A—C2—H2C 109.5 C22—C23—H23 119.4
H2B—C2—H2C 109.5 C25—C24—C23 119.69 (14)
N3—C3—N2 134.15 (13) C25—C24—H24 120.2
N3—C3—N5 113.05 (11) C23—C24—H24 120.2
N2—C3—N5 112.77 (11) C24—C25—C26 120.40 (15)
C16—C11—N1 113.16 (12) C24—C25—H25 119.8
C16—C11—C12 120.20 (12) C26—C25—H25 119.8
N1—C11—C12 126.61 (13) C25—C26—C21 119.93 (15)
C13—C12—C11 116.57 (13) C25—C26—H26 120.0
C13—C12—S1 121.87 (11) C21—C26—H26 120.0
C11—N1—N2—C3 −179.60 (11) C12—C13—C14—C15 0.2 (2)
C3—N3—N4—C21 176.56 (13) C13—C14—C15—C16 −1.6 (2)
N4—N3—C3—N2 1.0 (2) C14—C15—C16—C11 1.6 (2)
N4—N3—C3—N5 −176.84 (12) N1—C11—C16—C15 −178.69 (13)
N1—N2—C3—N3 1.7 (2) C12—C11—C16—C15 −0.4 (2)
N1—N2—C3—N5 179.48 (11) N3—N4—C21—C26 −1.4 (2)
O1—N5—C3—N3 161.94 (13) N3—N4—C21—C22 178.64 (13)
O2—N5—C3—N3 −17.90 (19) C26—C21—C22—C23 −1.7 (2)
O1—N5—C3—N2 −16.36 (18) N4—C21—C22—C23 178.25 (13)
O2—N5—C3—N2 163.80 (13) C26—C21—C22—S2 179.03 (12)
N2—N1—C11—C16 −173.42 (12) N4—C21—C22—S2 −1.06 (19)
N2—N1—C11—C12 8.4 (2) C2—S2—C22—C23 108.63 (13)
C16—C11—C12—C13 −0.93 (19) C2—S2—C22—C21 −72.07 (13)
N1—C11—C12—C13 177.12 (13) C21—C22—C23—C24 0.8 (2)
C16—C11—C12—S1 179.31 (11) S2—C22—C23—C24 −179.83 (12)
N1—C11—C12—S1 −2.65 (19) C22—C23—C24—C25 0.5 (2)
C1—S1—C12—C13 −7.47 (13) C23—C24—C25—C26 −0.9 (3)
C1—S1—C12—C11 172.28 (12) C24—C25—C26—C21 0.1 (3)
C11—C12—C13—C14 1.0 (2) C22—C21—C26—C25 1.2 (2)
S1—C12—C13—C14 −179.22 (11) N4—C21—C26—C25 −178.72 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4···S2 0.88 2.60 3.0248 (13) 110.
N4—H4···N1 0.88 1.99 2.6229 (16) 128.
C2—H2B···O1i 0.98 2.36 3.253 (2) 151.
C25—H25···O2ii 0.95 2.45 3.1901 (19) 134.

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2147).

References

  1. Bruker (2008). SADABS Bruker Inc., Madison, Wisconsin, USA.
  2. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Eschwege, K. G. von, Conradie, J. & Kuhn, A. (2011). J. Phys. Chem. A doi:10.1021/jp208212e.
  4. Eschwege, K. G. von & Swarts, J. C. (2010). Polyhedron, 29, 1727–1733.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Gilroy, J. B., Otieno, P. O., Ferguson, M. J., McDonald, R. & Hicks, R. G. (2008). Inorg. Chem. 47, 1279–1286. [DOI] [PubMed]
  7. Irving, H. M. N. H. (1977). Dithizone Analytical Sciences Monographs No. 5. London: The Chemical Society.
  8. Laing, M. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 1248–1252.
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. Mito, M., Takeda, K., Mukai, K., Azuma, N., Gleiter, M. R., Krieger, C. & Neugebaue, F. A. (1997). J. Phys. Chem. B, 101, 9517–9524.
  11. Pelkis, P. S., Dubenko, R. G. & Pupko, L. S. (1957). J. Org. Chem. USSR, 27, 2190–2194.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811054080/zq2147sup1.cif

e-68-0o199-sup1.cif (25.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811054080/zq2147Isup2.hkl

e-68-0o199-Isup2.hkl (194.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811054080/zq2147Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES