Skip to main content
The Texas Heart Institute Journal logoLink to The Texas Heart Institute Journal
. 1999;26(1):19–27.

Reversible congestive heart failure caused by myocardial hibernation.

J M Wilson 1
PMCID: PMC325595  PMID: 10217467

Abstract

Myocardial hibernation is reversible contractile dysfunction of cardiac myocytes caused by chronic ischemia. Animal studies and observations in human beings suggest that the term hibernation is a misnomer. Repetitive ischemic insult that does not produce necrosis results in functional and histologic tissue deterioration, which culminates in myocyte apoptosis. Revascularization of "hibernating" myocardium results in partial or complete recovery of function, depending upon the duration of ischemia and the severity of cellular degeneration. Improvement in global left ventricular function is proportional to the quantity of hibernating tissue that is revascularized, but this threshold quantity has not been determined with certainty. Diagnostic methods used to detect viable tissue within akinetic left ventricular segments depend upon the recognition of recruitable contractile function or the active concentration of a radioactive tracer. No diagnostic method has shown clear superiority. The most sensitive methods appear to be single-photon emission computed tomographic imaging after reinjection of thallium-201 at 24 hours and positron-emission tomographic imaging with 18F-fluorodeoxyglucose. The most specific diagnostic method appears to be measurement of dobutamine-stimulated contractile function, using either echocardiography or gated magnetic resonance imaging. We present a review of the pathophysiology, diagnosis, and treatment of myocardial hibernation, and include an illustrative case report involving a 57-year-old man with myocardial hibernation.

Full text

PDF
19

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afridi I., Grayburn P. A., Panza J. A., Oh J. K., Zoghbi W. A., Marwick T. H. Myocardial viability during dobutamine echocardiography predicts survival in patients with coronary artery disease and severe left ventricular systolic dysfunction. J Am Coll Cardiol. 1998 Oct;32(4):921–926. doi: 10.1016/s0735-1097(98)00321-0. [DOI] [PubMed] [Google Scholar]
  2. Afridi I., Kleiman N. S., Raizner A. E., Zoghbi W. A. Dobutamine echocardiography in myocardial hibernation. Optimal dose and accuracy in predicting recovery of ventricular function after coronary angioplasty. Circulation. 1995 Feb 1;91(3):663–670. doi: 10.1161/01.cir.91.3.663. [DOI] [PubMed] [Google Scholar]
  3. Alderman E. L., Bourassa M. G., Cohen L. S., Davis K. B., Kaiser G. G., Killip T., Mock M. B., Pettinger M., Robertson T. L. Ten-year follow-up of survival and myocardial infarction in the randomized Coronary Artery Surgery Study. Circulation. 1990 Nov;82(5):1629–1646. doi: 10.1161/01.cir.82.5.1629. [DOI] [PubMed] [Google Scholar]
  4. Anselmi M., Golia G., Cicoira M., Tinto M., Nitti M. T., Trappolin R., Rossi A., Zanolla L., Marino P., Zardini P. Prognostic value of detection of myocardial viability using low-dose dobutamine echocardiography in infarcted patients. Am J Cardiol. 1998 Jun 18;81(12A):21G–28G. doi: 10.1016/s0002-9149(98)00049-6. [DOI] [PubMed] [Google Scholar]
  5. Arnese M., Cornel J. H., Salustri A., Maat A., Elhendy A., Reijs A. E., Ten Cate F. J., Keane D., Balk A. H., Roelandt J. R. Prediction of improvement of regional left ventricular function after surgical revascularization. A comparison of low-dose dobutamine echocardiography with 201Tl single-photon emission computed tomography. Circulation. 1995 Jun 1;91(11):2748–2752. doi: 10.1161/01.cir.91.11.2748. [DOI] [PubMed] [Google Scholar]
  6. Ausma J., Cleutjens J., Thoné F., Flameng W., Ramaekers F., Borgers M. Chronic hibernating myocardium: interstitial changes. Mol Cell Biochem. 1995 Jun 7;147(1-2):35–42. doi: 10.1007/BF00944781. [DOI] [PubMed] [Google Scholar]
  7. Ausma J., Fürst D., Thoné F., Shivalkar B., Flameng W., Weber K., Ramaekers F., Borgers M. Molecular changes of titin in left ventricular dysfunction as a result of chronic hibernation. J Mol Cell Cardiol. 1995 May;27(5):1203–1212. doi: 10.1016/0022-2828(95)90056-x. [DOI] [PubMed] [Google Scholar]
  8. Baer F. M., Theissen P., Schneider C. A., Voth E., Sechtem U., Schicha H., Erdmann E. Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization. J Am Coll Cardiol. 1998 Apr;31(5):1040–1048. doi: 10.1016/s0735-1097(98)00032-1. [DOI] [PubMed] [Google Scholar]
  9. Baer F. M., Voth E., Schneider C. A., Theissen P., Schicha H., Sechtem U. Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with [18F]fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability. Circulation. 1995 Feb 15;91(4):1006–1015. doi: 10.1161/01.cir.91.4.1006. [DOI] [PubMed] [Google Scholar]
  10. Bax J. J., Cornel J. H., Visser F. C., Fioretti P. M., van Lingen A., Reijs A. E., Boersma E., Teule G. J., Visser C. A. Prediction of recovery of myocardial dysfunction after revascularization. Comparison of fluorine-18 fluorodeoxyglucose/thallium-201 SPECT, thallium-201 stress-reinjection SPECT and dobutamine echocardiography. J Am Coll Cardiol. 1996 Sep;28(3):558–564. doi: 10.1016/0735-1097(96)00222-7. [DOI] [PubMed] [Google Scholar]
  11. Bax J. J., Wijns W., Cornel J. H., Visser F. C., Boersma E., Fioretti P. M. Accuracy of currently available techniques for prediction of functional recovery after revascularization in patients with left ventricular dysfunction due to chronic coronary artery disease: comparison of pooled data. J Am Coll Cardiol. 1997 Nov 15;30(6):1451–1460. doi: 10.1016/s0735-1097(97)00352-5. [DOI] [PubMed] [Google Scholar]
  12. Bisi G., Sciagrà R., Santoro G. M., Rossi V., Fazzini P. F. Technetium-99m-sestamibi imaging with nitrate infusion to detect viable hibernating myocardium and predict postrevascularization recovery. J Nucl Med. 1995 Nov;36(11):1994–2000. [PubMed] [Google Scholar]
  13. Bourassa M. G., Lésperance J., Campeau L., Saltiel J. Fate of left ventricular contraction following aortocoronary venous grafts. Early and late postoperative modifications. Circulation. 1972 Oct;46(4):724–730. doi: 10.1161/01.cir.46.4.724. [DOI] [PubMed] [Google Scholar]
  14. Braunwald E., Kloner R. A. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation. 1982 Dec;66(6):1146–1149. doi: 10.1161/01.cir.66.6.1146. [DOI] [PubMed] [Google Scholar]
  15. Bruschke A. V., Proudfit W. L., Sones F. M., Jr Progress study of 590 consecutive nonsurgical cases of coronary disease followed 5-9 years. I. Arterographic correlations. Circulation. 1973 Jun;47(6):1147–1153. doi: 10.1161/01.cir.47.6.1147. [DOI] [PubMed] [Google Scholar]
  16. Bruschke A. V., Proudfit W. L., Sones F. M., Jr Progress study of 590 consecutive nonsurgical cases of coronary disease followed 5-9 years. II. Ventriculographic and other correlations. Circulation. 1973 Jun;47(6):1154–1163. doi: 10.1161/01.cir.47.6.1154. [DOI] [PubMed] [Google Scholar]
  17. Camici P. G., Wijns W., Borgers M., De Silva R., Ferrari R., Knuuti J., Lammertsma A. A., Liedtke A. J., Paternostro G., Vatner S. F. Pathophysiological mechanisms of chronic reversible left ventricular dysfunction due to coronary artery disease (hibernating myocardium). Circulation. 1997 Nov 4;96(9):3205–3214. doi: 10.1161/01.cir.96.9.3205. [DOI] [PubMed] [Google Scholar]
  18. Chatterjee K., Swan H. J., Parmley W. W., Sustaita H., Marcus H. S., Matloff J. Influence of direct myocardial revascularization on left ventricular asynergy and function in patients with coronary heart disease. With and without previous myocardial infarction. Circulation. 1973 Feb;47(2):276–286. doi: 10.1161/01.cir.47.2.276. [DOI] [PubMed] [Google Scholar]
  19. Cigarroa C. G., deFilippi C. R., Brickner M. E., Alvarez L. G., Wait M. A., Grayburn P. A. Dobutamine stress echocardiography identifies hibernating myocardium and predicts recovery of left ventricular function after coronary revascularization. Circulation. 1993 Aug;88(2):430–436. doi: 10.1161/01.cir.88.2.430. [DOI] [PubMed] [Google Scholar]
  20. Cohen M., Charney R., Hershman R., Fuster V., Gorlin R. Reversal of chronic ischemic myocardial dysfunction after transluminal coronary angioplasty. J Am Coll Cardiol. 1988 Nov;12(5):1193–1198. doi: 10.1016/0735-1097(88)92599-5. [DOI] [PubMed] [Google Scholar]
  21. Cornel J. H., Bax J. J., Elhendy A., Maat A. P., Kimman G. J., Geleijnse M. L., Rambaldi R., Boersma E., Fioretti P. M. Biphasic response to dobutamine predicts improvement of global left ventricular function after surgical revascularization in patients with stable coronary artery disease: implications of time course of recovery on diagnostic accuracy. J Am Coll Cardiol. 1998 Apr;31(5):1002–1010. doi: 10.1016/s0735-1097(98)00067-9. [DOI] [PubMed] [Google Scholar]
  22. Dakik H. A., Howell J. F., Lawrie G. M., Espada R., Weilbaecher D. G., He Z. X., Mahmarian J. J., Verani M. S. Assessment of myocardial viability with 99mTc-sestamibi tomography before coronary bypass graft surgery: correlation with histopathology and postoperative improvement in cardiac function. Circulation. 1997 Nov 4;96(9):2892–2898. doi: 10.1161/01.cir.96.9.2892. [DOI] [PubMed] [Google Scholar]
  23. Di Carli M. F., Davidson M., Little R., Khanna S., Mody F. V., Brunken R. C., Czernin J., Rokhsar S., Stevenson L. W., Laks H. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol. 1994 Mar 15;73(8):527–533. doi: 10.1016/0002-9149(94)90327-1. [DOI] [PubMed] [Google Scholar]
  24. Eitzman D., al-Aouar Z., Kanter H. L., vom Dahl J., Kirsh M., Deeb G. M., Schwaiger M. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol. 1992 Sep;20(3):559–565. doi: 10.1016/0735-1097(92)90008-b. [DOI] [PubMed] [Google Scholar]
  25. Elsässer A., Schlepper M., Klövekorn W. P., Cai W. J., Zimmermann R., Müller K. D., Strasser R., Kostin S., Gagel C., Münkel B. Hibernating myocardium: an incomplete adaptation to ischemia. Circulation. 1997 Nov 4;96(9):2920–2931. doi: 10.1161/01.cir.96.9.2920. [DOI] [PubMed] [Google Scholar]
  26. Go R. T., MacIntyre W. J., Cook S. A., Neumann D. R., Brunken R. C., Saha G. B., Underwood D. A., Marwick T. H., Chen E. Q., King J. L. The incidence of scintigraphically viable and nonviable tissue by rubidium-82 and fluorine-18-fluorodeoxyglucose positron emission tomographic imaging in patients with prior infarction and left ventricular dysfunction. J Nucl Cardiol. 1996 Mar-Apr;3(2):96–104. doi: 10.1016/s1071-3581(96)90001-x. [DOI] [PubMed] [Google Scholar]
  27. Gunning M. G., Chua T. P., Harrington D., Knight C. J., Burman E., Pennell D. J., Pepper J., Fox K., Underwood S. R. Hibernating myocardium: clinical and functional response to revascularisation. Eur J Cardiothorac Surg. 1997 Jun;11(6):1105–1112. doi: 10.1016/s1010-7940(97)01211-6. [DOI] [PubMed] [Google Scholar]
  28. Helfant R. H., Pine R., Meister S. G., Feldman M. S., Trout R. G., Banka V. S. Nitroglycerin to unmask reversible asynergy. Correlation with post coronary bypass ventriculography. Circulation. 1974 Jul;50(1):108–113. doi: 10.1161/01.cir.50.1.108. [DOI] [PubMed] [Google Scholar]
  29. Hennessy T., Diamond P., Holligan B., O'Keane C., Hurley J., Codd M., McCarthy C., McCann H., Sugrue D. Correlation of myocardial histologic changes in hibernating myocardium with dobutamine stress echocardiographic findings. Am Heart J. 1998 Jun;135(6 Pt 1):952–959. doi: 10.1016/s0002-8703(98)70059-6. [DOI] [PubMed] [Google Scholar]
  30. Kaprielian R. R., Gunning M., Dupont E., Sheppard M. N., Rothery S. M., Underwood R., Pennell D. J., Fox K., Pepper J., Poole-Wilson P. A. Downregulation of immunodetectable connexin43 and decreased gap junction size in the pathogenesis of chronic hibernation in the human left ventricle. Circulation. 1998 Feb 24;97(7):651–660. doi: 10.1161/01.cir.97.7.651. [DOI] [PubMed] [Google Scholar]
  31. Kostopoulos K. G., Kranidis A. I., Bouki K. P., Antonellis J. P., Kappos K. G., Rodogianni F. E., Zamanis N. J., Tavernarakis A. G., Lolas C. T., Anthopoulos L. P. Detection of myocardial viability in the prediction of improvement in left ventricular function after successful coronary revascularization by using the dobutamine stress echocardiography and quantitative SPECT rest-redistribution-reinjection 201TI imaging after dipyridamole infusion. Angiology. 1996 Nov;47(11):1039–1046. doi: 10.1177/000331979604701103. [DOI] [PubMed] [Google Scholar]
  32. La Canna G., Alfieri O., Giubbini R., Gargano M., Ferrari R., Visioli O. Echocardiography during infusion of dobutamine for identification of reversibly dysfunction in patients with chronic coronary artery disease. J Am Coll Cardiol. 1994 Mar 1;23(3):617–626. doi: 10.1016/0735-1097(94)90745-5. [DOI] [PubMed] [Google Scholar]
  33. Lee K. S., Marwick T. H., Cook S. A., Go R. T., Fix J. S., James K. B., Sapp S. K., MacIntyre W. J., Thomas J. D. Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. Relative efficacy of medical therapy and revascularization. Circulation. 1994 Dec;90(6):2687–2694. doi: 10.1161/01.cir.90.6.2687. [DOI] [PubMed] [Google Scholar]
  34. Ma L., Chen L., Gillam L., Waters D. D., Chen C. Nitroglycerin enhances the ability of dobutamine stress echocardiography to detect hibernating myocardium. Circulation. 1997 Dec 2;96(11):3992–4001. doi: 10.1161/01.cir.96.11.3992. [DOI] [PubMed] [Google Scholar]
  35. Marwick T. H., Nemec J. J., Lafont A., Salcedo E. E., MacIntyre W. J. Prediction by postexercise fluoro-18 deoxyglucose positron emission tomography of improvement in exercise capacity after revascularization. Am J Cardiol. 1992 Apr 1;69(9):854–859. doi: 10.1016/0002-9149(92)90782-t. [DOI] [PubMed] [Google Scholar]
  36. Matsunari I., Böning G., Ziegler S. I., Nekolla S. G., Stollfuss J. C., Kosa I., Ficaro E. P., Schwaiger M. Attenuation-corrected 99mTc-tetrofosmin single-photon emission computed tomography in the detection of viable myocardium: comparison with positron emission tomography using 18F-fluorodeoxyglucose. J Am Coll Cardiol. 1998 Oct;32(4):927–935. doi: 10.1016/s0735-1097(98)00340-4. [DOI] [PubMed] [Google Scholar]
  37. McNulty P. H., Sinusas A. J., Shi C. Q., Dione D., Young L. H., Cline G. C., Shulman G. I. Glucose metabolism distal to a critical coronary stenosis in a canine model of low-flow myocardial ischemia. J Clin Invest. 1996 Jul 1;98(1):62–69. doi: 10.1172/JCI118778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Meluzín J., Cerný J., Frélich M., Stetka F., Spinarová L., Popelová J., Stípal R. Prognostic value of the amount of dysfunctional but viable myocardium in revascularized patients with coronary artery disease and left ventricular dysfunction. Investigators of this Multicenter Study. J Am Coll Cardiol. 1998 Oct;32(4):912–920. doi: 10.1016/s0735-1097(98)00324-6. [DOI] [PubMed] [Google Scholar]
  39. Nagueh S. F., Vaduganathan P., Ali N., Blaustein A., Verani M. S., Winters W. L., Jr, Zoghbi W. A. Identification of hibernating myocardium: comparative accuracy of myocardial contrast echocardiography, rest-redistribution thallium-201 tomography and dobutamine echocardiography. J Am Coll Cardiol. 1997 Apr;29(5):985–993. doi: 10.1016/s0735-1097(97)00001-6. [DOI] [PubMed] [Google Scholar]
  40. Ragosta M., Beller G. A., Watson D. D., Kaul S., Gimple L. W. Quantitative planar rest-redistribution 201Tl imaging in detection of myocardial viability and prediction of improvement in left ventricular function after coronary bypass surgery in patients with severely depressed left ventricular function. Circulation. 1993 May;87(5):1630–1641. doi: 10.1161/01.cir.87.5.1630. [DOI] [PubMed] [Google Scholar]
  41. Rahimtoola S. H. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation. 1985 Dec;72(6 Pt 2):V123–V135. [PubMed] [Google Scholar]
  42. Schwarz E. R., Schaper J., vom Dahl J., Altehoefer C., Grohmann B., Schoendube F., Sheehan F. H., Uebis R., Buell U., Messmer B. J. Myocyte degeneration and cell death in hibernating human myocardium. J Am Coll Cardiol. 1996 Jun;27(7):1577–1585. doi: 10.1016/0735-1097(96)00059-9. [DOI] [PubMed] [Google Scholar]
  43. Schwarz E. R., Schoendube F. A., Kostin S., Schmiedtke N., Schulz G., Buell U., Messmer B. J., Morrison J., Hanrath P., vom Dahl J. Prolonged myocardial hibernation exacerbates cardiomyocyte degeneration and impairs recovery of function after revascularization. J Am Coll Cardiol. 1998 Apr;31(5):1018–1026. doi: 10.1016/s0735-1097(98)00041-2. [DOI] [PubMed] [Google Scholar]
  44. Sciagrà R., Bisi G., Santoro G. M., Zerauschek F., Sestini S., Pedenovi P., Pappagallo R., Fazzini P. F. Comparison of baseline-nitrate technetium-99m sestamibi with rest-redistribution thallium-201 tomography in detecting viable hibernating myocardium and predicting postrevascularization recovery. J Am Coll Cardiol. 1997 Aug;30(2):384–391. doi: 10.1016/s0735-1097(97)00192-7. [DOI] [PubMed] [Google Scholar]
  45. Scognamiglio R., Marin M., Miorelli M., Palisi M., Fasoli G., Dalla Volta S. Postextrasystolic potentiation echocardiography in predicting reversible myocardial dysfunction by surgical coronary revascularization. Am J Cardiol. 1998 Jun 18;81(12A):36G–40G. doi: 10.1016/s0002-9149(98)00052-6. [DOI] [PubMed] [Google Scholar]
  46. Shen Y. T., Vatner S. F. Mechanism of impaired myocardial function during progressive coronary stenosis in conscious pigs. Hibernation versus stunning? Circ Res. 1995 Mar;76(3):479–488. doi: 10.1161/01.res.76.3.479. [DOI] [PubMed] [Google Scholar]
  47. Smith S. C., Jr AHA president's letter. Circulation. 1995 Jul 1;92(1):1–1. [PubMed] [Google Scholar]
  48. Smith S. C., Jr AHA president's letter. Circulation. 1995 Jul 1;92(1):1–1. [PubMed] [Google Scholar]
  49. Tillisch J., Brunken R., Marshall R., Schwaiger M., Mandelkern M., Phelps M., Schelbert H. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med. 1986 Apr 3;314(14):884–888. doi: 10.1056/NEJM198604033141405. [DOI] [PubMed] [Google Scholar]
  50. Udelson J. E., Coleman P. S., Metherall J., Pandian N. G., Gomez A. R., Griffith J. L., Shea N. L., Oates E., Konstam M. A. Predicting recovery of severe regional ventricular dysfunction. Comparison of resting scintigraphy with 201Tl and 99mTc-sestamibi. Circulation. 1994 Jun;89(6):2552–2561. doi: 10.1161/01.cir.89.6.2552. [DOI] [PubMed] [Google Scholar]
  51. Vanoverschelde J. L., D'Hondt A. M., Marwick T., Gerber B. L., De Kock M., Dion R., Wijns W., Melin J. A. Head-to-head comparison of exercise-redistribution-reinjection thallium single-photon emission computed tomography and low dose dobutamine echocardiography for prediction of reversibility of chronic left ventricular ischemic dysfunction. J Am Coll Cardiol. 1996 Aug;28(2):432–442. doi: 10.1016/0735-1097(96)00167-2. [DOI] [PubMed] [Google Scholar]
  52. Varnauskas E. Twelve-year follow-up of survival in the randomized European Coronary Surgery Study. N Engl J Med. 1988 Aug 11;319(6):332–337. doi: 10.1056/NEJM198808113190603. [DOI] [PubMed] [Google Scholar]
  53. Wijns W., Vatner S. F., Camici P. G. Hibernating myocardium. N Engl J Med. 1998 Jul 16;339(3):173–181. doi: 10.1056/NEJM199807163390307. [DOI] [PubMed] [Google Scholar]
  54. Zimmermann R., Mall G., Rauch B., Zimmer G., Gabel M., Zehelein J., Bubeck B., Tillmanns H., Hagl S., Kübler W. Residual 201Tl activity in irreversible defects as a marker of myocardial viability. Clinicopathological study. Circulation. 1995 Feb 15;91(4):1016–1021. doi: 10.1161/01.cir.91.4.1016. [DOI] [PubMed] [Google Scholar]
  55. deFilippi C. R., Willett D. L., Irani W. N., Eichhorn E. J., Velasco C. E., Grayburn P. A. Comparison of myocardial contrast echocardiography and low-dose dobutamine stress echocardiography in predicting recovery of left ventricular function after coronary revascularization in chronic ischemic heart disease. Circulation. 1995 Nov 15;92(10):2863–2868. doi: 10.1161/01.cir.92.10.2863. [DOI] [PubMed] [Google Scholar]

Articles from Texas Heart Institute Journal are provided here courtesy of Texas Heart Institute

RESOURCES