Abstract
Kethoxal modification of guanosines within Phe-tRNAPhe from E. coli was studied for tRNA in the free state and specifically bound to the ribosomal A-site. Complex formation with the ribosome results in a protection from chemical modification of two distant sites in the tRNA molecule. The guanosines affected are G-18 and G-19, located in the D-loop, and G-34 in the anticodon loop. Modification of Phe-tRNAPhe in the absence of ribosomes leads to a destabilisation of the tRNA structure. Our data are consistent with the conclusion that modification of G-34 at the anticodon loop triggers a conformational instability in distant parts of the tRNA molecule.
Full text
PDF














Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arai K. I., Kawakita M., Kaziro Y. Studies on polypeptide elongation factors from Escherichia coli. II. Purification of factors Tu-guanosine diphosphate, Ts, and Tu-Ts, and crystallization of Tu-guanosine diphosphate and Tu-Ts. J Biol Chem. 1972 Nov 10;247(21):7029–7037. [PubMed] [Google Scholar]
- Bruce A. G., Uhlenbeck O. C. Reactions at the termini of tRNA with T4 RNA ligase. Nucleic Acids Res. 1978 Oct;5(10):3665–3677. doi: 10.1093/nar/5.10.3665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farber N., Cantor C. R. Comparison of the structures of free and ribosome-bound tRNAPhe by using slow tritium exchange. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5135–5139. doi: 10.1073/pnas.77.9.5135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gassen H. G. Ligand-induced conformational changes in ribonucleic acids. Prog Nucleic Acid Res Mol Biol. 1980;24:57–86. doi: 10.1016/s0079-6603(08)60671-6. [DOI] [PubMed] [Google Scholar]
- Leder P., Bursztyn H. Initiation of protein synthesis II. A convenient assay for the ribosome-dependent synthesis of N-formyl-C14-methionylpuromycin. Biochem Biophys Res Commun. 1966 Oct 20;25(2):233–238. doi: 10.1016/0006-291x(66)90586-9. [DOI] [PubMed] [Google Scholar]
- Peattie D. A., Gilbert W. Chemical probes for higher-order structure in RNA. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4679–4682. doi: 10.1073/pnas.77.8.4679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz I., Ofengand J. E coli tRNAPhe modified at the 3-(3-amino-3-carboxypropyl) uridine with a photoaffinity label is fully functional for aminoacylation and for ribosomal interaction. Biochim Biophys Acta. 1982 Jun 30;697(3):330–335. doi: 10.1016/0167-4781(82)90096-3. [DOI] [PubMed] [Google Scholar]
- Van Charldorp R., Heus H. A., Van Knippenberg P. H. Adenosine dimethylation of 16S ribosomal RNA: effect of the methylgroups on local conformational stability as deduced from electrophoretic mobility of RNA fragments in denaturing polyacrylamide gels. Nucleic Acids Res. 1981 Jan 24;9(2):267–275. doi: 10.1093/nar/9.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner R., Garrett R. A. Chemical evidence for a codon-induced allosteric change in tRNALys involving the 7-methylguanosine residue 46. Eur J Biochem. 1979 Jul;97(2):615–621. doi: 10.1111/j.1432-1033.1979.tb13151.x. [DOI] [PubMed] [Google Scholar]
- Wagner R., Garrett R. A. Chemical evidence for a codon-induced change of tRNA conformation. FEBS Lett. 1978 Jan 15;85(2):291–295. doi: 10.1016/0014-5793(78)80476-1. [DOI] [PubMed] [Google Scholar]
- de Groot N., Lapidot Y., Panet A., Wolman Y. The synthesis of N-acetylphenylalanyl-sRNA. Biochem Biophys Res Commun. 1966 Oct 5;25(1):17–22. doi: 10.1016/0006-291x(66)90633-4. [DOI] [PubMed] [Google Scholar]