Abstract
I have measured the effect of hormones and other regulatory factors present in the serum component of the culture medium on the levels of growth hormone and prolactin mRNAs in rat pituitary (GH4) cells. Hybridization of cytoplasmic RNA with growth hormone or prolactin cDNA clones indicate that serum depletion reduces significantly the amount of these two mRNAs. The localization of these two genes in chromatin was also analysed using micrococcal nuclease as a probe. At intermediate levels of digestion (about 10% of the input A260 released into a soluble supernatant S1), the bulk of both growth hormone and prolactin genes are rapidly solubilized by the nuclease and appear in the soluble supernatant S1. Nevertheless, at low levels of digestion (less than 4% of the input A260 released into S1) the growth hormone gene remains exquisitively sensitive to micrococcal nuclease while the sensitivity of the prolactin gene is reduced considerably. When one compares the distribution of growth hormone and prolactin genes in chromatin fractions differing in nuclease sensitivity and derived from cells grown in control medium or in depleted medium, it appears that markedly reduced transcriptional activity of the prolactin gene shows no correlation with altered chromatin structure. On the other hand, the chromatin structure of the growth hormone gene is significantly altered when transcription is markedly reduced.
Full text
PDF












Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bancroft F. C. Measurement of growth hormone synthesis by rat pituitary cells in culture. Endocrinology. 1973 Apr;92(4):1014–1021. doi: 10.1210/endo-92-4-1014. [DOI] [PubMed] [Google Scholar]
- Barta A., Richards R. I., Baxter J. D., Shine J. Primary structure and evolution of rat growth hormone gene. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4867–4871. doi: 10.1073/pnas.78.8.4867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baxter J. D., Eberhardt N. L., Apriletti J. W., Johnson L. K., Ivarie R. D., Schachter B. S., Morris J. A., Seeburg P. H., Goodman H. M., Latham K. R. Thyroid hormone receptors and responses. Recent Prog Horm Res. 1979;35:97–153. [PubMed] [Google Scholar]
- Beatriz L. W., McCarthy B. J. Messenger RNA complexity in Drosophila melanogaster. Biochemistry. 1975 Jun 3;14(11):2440–2446. doi: 10.1021/bi00682a026. [DOI] [PubMed] [Google Scholar]
- Cooke N. E., Baxter J. D. Structural analysis of the prolactin gene suggests a separate origin for its 5' end. Nature. 1982 Jun 17;297(5867):603–606. doi: 10.1038/297603a0. [DOI] [PubMed] [Google Scholar]
- Dannies P. S., Tashjian A. H., Jr Thyrotropin-releasing hormone increases prolactin mRNA activity in the cytoplasm of GH-cells as measured by translation in a wheat germ cell-free system. Biochem Biophys Res Commun. 1976 Jun 21;70(4):1180–1189. doi: 10.1016/0006-291x(76)91027-5. [DOI] [PubMed] [Google Scholar]
- Dingwall C., Lomonossoff G. P., Laskey R. A. High sequence specificity of micrococcal nuclease. Nucleic Acids Res. 1981 Jun 25;9(12):2659–2673. doi: 10.1093/nar/9.12.2659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egan P. A., Levy-Wilson B. Structure of transcriptionally active and inactive nucleosomes from butyrate-treated and control HeLa cells. Biochemistry. 1981 Jun 23;20(13):3695–3702. doi: 10.1021/bi00516a005. [DOI] [PubMed] [Google Scholar]
- Gautvik K. M., Kriz M. Effects of prostaglandins on prolactin and growth hormone synthesis and secretion in cultured rat pituitary cells. Endocrinology. 1976 Feb;98(2):352–358. doi: 10.1210/endo-98-2-352. [DOI] [PubMed] [Google Scholar]
- Hörz W., Altenburger W. Sequence specific cleavage of DNA by micrococcal nuclease. Nucleic Acids Res. 1981 Jun 25;9(12):2643–2658. doi: 10.1093/nar/9.12.2643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ivarie R. D., Baxter J. D., Morris J. A. Interaction of thyroid and glucocorticoid hormones in rat pituitary tumor cells. Specificity and diversity of the responses analyzed by two-dimensional gel electrophoresis. J Biol Chem. 1981 May 10;256(9):4520–4528. [PubMed] [Google Scholar]
- Levy B. W., Connor W., Dixon G. H. A subset of trout testis nucleosomes enriched in transcribed DNA sequences contains high mobility group proteins as major structural components. J Biol Chem. 1979 Feb 10;254(3):609–620. [PubMed] [Google Scholar]
- Lieberman M. E., Maurer R. A., Gorski J. Estrogen control of prolactin synthesis in vitro. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5946–5949. doi: 10.1073/pnas.75.12.5946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maniatis T., Jeffrey A., Kleid D. G. Nucleotide sequence of the rightward operator of phage lambda. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1184–1188. doi: 10.1073/pnas.72.3.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martial J. A., Seeburg P. H., Guenzi D., Goodman H. M., Baxter J. D. Regulation of growth hormone gene expression: synergistic effects of thyroid and glucocorticoid hormones. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4293–4295. doi: 10.1073/pnas.74.10.4293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maurer R. A. Thyroid hormone specifically inhibits prolactin synthesis and decreases prolactin messenger ribonucleic acid levels in cultured pituitary cells. Endocrinology. 1982 May;110(5):1507–1514. doi: 10.1210/endo-110-5-1507. [DOI] [PubMed] [Google Scholar]
- Owerbach D., Rutter W. J., Cooke N. E., Martial J. A., Shows T. B. The prolactin gene is located on chromosome 6 in humans. Science. 1981 May 15;212(4496):815–816. doi: 10.1126/science.7221563. [DOI] [PubMed] [Google Scholar]
- Owerbach D., Rutter W. J., Martial J. A., Baxter J. D., Shows T. B. Genes for growth hormone, chorionic somatommammotropin, and growth hormones-like gene on chromosome 17 in humans. Science. 1980 Jul 11;209(4453):289–292. doi: 10.1126/science.7384802. [DOI] [PubMed] [Google Scholar]
- Senior M. B., Frankel F. R. Evidence for two kinds of chromatin binding sites for the estradiol-receptor complex. Cell. 1978 Aug;14(4):857–863. doi: 10.1016/0092-8674(78)90341-0. [DOI] [PubMed] [Google Scholar]
- Shapiro L. E., Samuels H. H., Yaffe B. M. Thyroid and glucocorticoid hormones synergistically control growth hormone mRNA in cultured GH1 cells. Proc Natl Acad Sci U S A. 1978 Jan;75(1):45–49. doi: 10.1073/pnas.75.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spindler S. R., Mellon S. H., Baxter J. D. Growth hormone gene transcription is regulated by thyroid and glucocorticoid hormones in cultured rat pituitary tumor cells. J Biol Chem. 1982 Oct 10;257(19):11627–11632. [PubMed] [Google Scholar]
- Tashjian A. H., Jr, Bancroft F. C., Levine L. Production of both prolactin and growth hormone by clonal strains of rat pituitary tumor cells. Differential effects of hydrocortisone and tissue extracts. J Cell Biol. 1970 Oct;47(1):61–70. doi: 10.1083/jcb.47.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White B. A., Bauerle L. R., Bancroft F. C. Calcium specifically stimulates prolactin synthesis and messenger RNA sequences in GH3 cells. J Biol Chem. 1981 Jun 25;256(12):5942–5945. [PubMed] [Google Scholar]