Abstract
In vivo transcripts of the L (4.5 kb) and M (1.9 kb) dsRNA plasmids were examined in type I killers of Saccharomyces cerevisiae. Transcripts for both plasmids include full-length (l,m) and partial-length (la,ma) single-stranded species. Both L-dsRNA transcripts (l,la) have in vitro mRNA activity for L-P1, previously shown to be identical to ScV-P1, the 88,000 dalton major capsid protein of the virus-like particles containing L- and M1-dsRNAs. 1, but not 1a, is bound to poly(U)-sepharose and may be polyadenylated. Other L-dsRNA gene products and their transcripts may exist. For M1-dsRNA, both species (m, ma) have in vitro mRNA activity for M1-P1, the 32,000 dalton pre-protoxin encoded by M1-dsRNA. Both m and ma are bound to poly(U)-Sepharose and ma is probably a 5' terminal fragment of m. A functional model for M1-dsRNA killer plasmid structure is presented.
Full text
PDF![1077](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b1/325777/600fb48dd70e/nar00349-0171.png)
![1078](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b1/325777/22258c4d8510/nar00349-0172.png)
![1079](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b1/325777/bc870aa8c245/nar00349-0173.png)
![1080](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b1/325777/1322ec9013f4/nar00349-0174.png)
![1081](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b1/325777/6bfa57ec86b2/nar00349-0175.png)
![1082](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b1/325777/2bb61dfc67e5/nar00349-0176.png)
![1083](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b1/325777/525141dbe978/nar00349-0177.png)
![1084](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b1/325777/cc13a42d66f2/nar00349-0178.png)
![1085](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b1/325777/e2dad1aa254d/nar00349-0179.png)
![1086](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b1/325777/da87bab74bba/nar00349-0180.png)
![1087](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b1/325777/69961543b1cf/nar00349-0181.png)
![1088](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b1/325777/b6c33cf862ab/nar00349-0182.png)
![1089](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b1/325777/90ef66aad252/nar00349-0183.png)
![1090](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b1/325777/3587d26c28ce/nar00349-0184.png)
![1091](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b1/325777/15183fb03dd5/nar00349-0185.png)
![1092](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b1/325777/baac91d1dc37/nar00349-0186.png)
![1093](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b1/325777/37e940356b51/nar00349-0187.png)
![1094](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b1/325777/2097c518204b/nar00349-0188.png)
![1095](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b1/325777/3cc61c29e5ab/nar00349-0189.png)
![1096](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b1/325777/5a6fea7db51c/nar00349-0190.png)
![1097](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b1/325777/0b0dced4f8d7/nar00349-0191.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bostian K. A., Hopper J. E., Rogers D. T., Tipper D. J. Translational analysis of the killer-associated virus-like particle dsRNA genome of S. cerevisiae: M dsRNA encodes toxin. Cell. 1980 Feb;19(2):403–414. doi: 10.1016/0092-8674(80)90514-0. [DOI] [PubMed] [Google Scholar]
- Bostian K. A., Lee R. C., Halvorson H. O. Preparative fractionation of nucleic acids by agarose gel electrophoresis. Anal Biochem. 1979 May;95(1):174–182. doi: 10.1016/0003-2697(79)90201-x. [DOI] [PubMed] [Google Scholar]
- Bostian K. A., Sturgeon J. A., Tipper D. J. Encapsidation of yeast killer double-stranded ribonucleic acids: dependence of M on L. J Bacteriol. 1980 Jul;143(1):463–470. doi: 10.1128/jb.143.1.463-470.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brennan V. E., Bobek L. A., Bruenn J. A. Yeast deRNA viral transcriptase pause products: identification of the transcript strand. Nucleic Acids Res. 1981 Oct 10;9(19):5049–5059. doi: 10.1093/nar/9.19.5049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruenn J. A., Brennan V. E. Yeast viral double-stranded RNAs have heterogeneous 3' termini. Cell. 1980 Apr;19(4):923–933. doi: 10.1016/0092-8674(80)90084-7. [DOI] [PubMed] [Google Scholar]
- Bruenn J. A. Virus-like particles of yeast. Annu Rev Microbiol. 1980;34:49–68. doi: 10.1146/annurev.mi.34.100180.000405. [DOI] [PubMed] [Google Scholar]
- Bruenn J., Bobek L., Brennan V., Held W. Yeast viral RNA polymerase is a transcriptase. Nucleic Acids Res. 1980 Jul 11;8(13):2985–2997. doi: 10.1093/nar/8.13.2985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bussey H., Sacks W., Galley D., Saville D. Yeast killer plasmid mutations affecting toxin secretion and activity and toxin immunity function. Mol Cell Biol. 1982 Apr;2(4):346–354. doi: 10.1128/mcb.2.4.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Darzynkiewicz E., Shatkin A. J. Assignment of reovirus mRNA ribosome binding sites to virion genome segments by nucleotide sequence analyses. Nucleic Acids Res. 1980 Jan 25;8(2):337–350. doi: 10.1093/nar/8.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Field L. J., Bobek L. A., Brennan V. E., Reilly J. D., Bruenn J. A. There are at least two yeast viral double-stranded RNAs of the same size: an explanation for viral exclusion. Cell. 1982 Nov;31(1):193–200. doi: 10.1016/0092-8674(82)90419-6. [DOI] [PubMed] [Google Scholar]
- Franklin R. M. Purification and properties of the replicative intermediate of the RNA bacteriophage R17. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1504–1511. doi: 10.1073/pnas.55.6.1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fried H. M., Fink G. R. Electron microscopic heteroduplex analysis of "killer" double-stranded RNA species from yeast. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4224–4228. doi: 10.1073/pnas.75.9.4224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herring A. J., Bevan E. A. Virus-like particles associated with the double-stranded RNA species found in killer and sensitive strains of the yeast Saccharomyces cerevisiae. J Gen Virol. 1974 Mar;22(3):387–394. doi: 10.1099/0022-1317-22-3-387. [DOI] [PubMed] [Google Scholar]
- Holland M. J., Holland J. P. Isolation and identification of yeast messenger ribonucleic acids coding for enolase, glyceraldehyde-3-phosphate dehydrogenase, and phosphoglycerate kinase. Biochemistry. 1978 Nov 14;17(23):4900–4907. doi: 10.1021/bi00616a007. [DOI] [PubMed] [Google Scholar]
- Hopper J. E., Bostian K. A., Rowe L. B., Tipper D. J. Translation of the L-species dsRNA genome of the killer-associated virus-like particles of Saccharomyces cerevisiae. J Biol Chem. 1977 Dec 25;252(24):9010–9017. [PubMed] [Google Scholar]
- Iverson L. E., Rose J. K. Localized attenuation and discontinuous synthesis during vesicular stomatitis virus transcription. Cell. 1981 Feb;23(2):477–484. doi: 10.1016/0092-8674(81)90143-4. [DOI] [PubMed] [Google Scholar]
- Palatnik C. M., Storti R. V., Jacobson A. Fractionation and functional analysis of newly synthesized and decaying messenger RNAs from vegetative cells of Dictyostelium discoideum. J Mol Biol. 1979 Mar 5;128(3):371–395. doi: 10.1016/0022-2836(79)90093-7. [DOI] [PubMed] [Google Scholar]
- Palfree R. G., Bussey H. Yeast killer toxin: purification and characterisation of the protein toxin from Saccharomyces cerevisiae. Eur J Biochem. 1979 Feb 1;93(3):487–493. doi: 10.1111/j.1432-1033.1979.tb12847.x. [DOI] [PubMed] [Google Scholar]
- Pelham H. R., Jackson R. J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem. 1976 Aug 1;67(1):247–256. doi: 10.1111/j.1432-1033.1976.tb10656.x. [DOI] [PubMed] [Google Scholar]
- Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
- Silverstein S. C., Christman J. K., Acs G. The reovirus replicative cycle. Annu Rev Biochem. 1976;45:375–408. doi: 10.1146/annurev.bi.45.070176.002111. [DOI] [PubMed] [Google Scholar]
- Sogin S. J., Saunders C. A. Fluctuation in polyadenylate size and content in exponential- and stationary-phase cells of Saccharomyces cerevisiae. J Bacteriol. 1980 Oct;144(1):74–81. doi: 10.1128/jb.144.1.74-81.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sommer S. S., Wickner R. B. Co-curing of plasmids affecting killer double-stranded RNAs of Saccharomyces cerevisiae: [HOK], [NEX], and the abundance of L are related and further evidence that M1 requires L. J Bacteriol. 1982 May;150(2):545–551. doi: 10.1128/jb.150.2.545-551.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sommer S. S., Wickner R. B. Yeast L dsRNA consists of at least three distinct RNAs; evidence that the non-Mendelian genes [HOK], [NEX] and [EXL] are on one of these dsRNAs. Cell. 1982 Dec;31(2 Pt 1):429–441. doi: 10.1016/0092-8674(82)90136-2. [DOI] [PubMed] [Google Scholar]
- Thiele D. J., Wang R. W., Leibowitz M. J. Separation and sequence of the 3' termini of M double-stranded RNA from killer yeast. Nucleic Acids Res. 1982 Mar 11;10(5):1661–1678. doi: 10.1093/nar/10.5.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toh-E A., Wickner R. B. "Superkiller" mutations suppress chromosomal mutations affecting double-stranded RNA killer plasmid replication in saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1980 Jan;77(1):527–530. doi: 10.1073/pnas.77.1.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welsh D., Leibowitz M. J. Transcription of killer virion double-stranded RNA in vitro. Nucleic Acids Res. 1980 Jun 11;8(11):2365–2375. doi: 10.1093/nar/8.11.2365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wickner R. B. Plasmids controlled exclusion of the K2 killer double-stranded RNA plasmid of yeast. Cell. 1980 Aug;21(1):217–226. doi: 10.1016/0092-8674(80)90129-4. [DOI] [PubMed] [Google Scholar]
- Wickner R. B. The killer double-stranded RNA plasmids of yeast. Plasmid. 1979 Jul;2(3):303–322. doi: 10.1016/0147-619x(79)90015-5. [DOI] [PubMed] [Google Scholar]
- Wickner R. B. Twenty-six chromosomal genes needed to maintain the killer double-stranded RNA plasmid of Saccharomyces cerevisiae. Genetics. 1978 Mar;88(3):419–425. doi: 10.1093/genetics/88.3.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de la Peña P., Barros F., Gascón S., Lazo P. S., Ramos S. Effect of yeast killer toxin on sensitive cells of Saccharomyces cerevisiae. J Biol Chem. 1981 Oct 25;256(20):10420–10425. [PubMed] [Google Scholar]