Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1983 Mar 25;11(6):1909–1912. doi: 10.1093/nar/11.6.1909

The nucleotide sequences of 5S rRNAs from a multicellular green alga, Ulva pertusa, and two brown algae, Eisenia bicyclis and Sargassum fulvellum.

B L Lim, H Hori, S Osawa
PMCID: PMC325844  PMID: 6835842

Abstract

The nucleotide sequences of 5S rRNA from a multicellular green alga Ulva pertusa, and multicellular brown algae Eisenia bicyclis and Sargassum fulvellum, have been determined. The 5S rRNA from Ulva is composed of 120 nucleotides, and those from Eisenia and Sargassum have 118 nucleotides. The nucleotide sequence of Ulva 5S rRNA is rather similar to 5S rRNAs from unicellular green algae and higher plants, while those of Eisenia and Sargassum 5S rRNAs are unique.

Full text

PDF
1909

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Delihas N., Andersen J. Generalized structures of the 5S ribosomal RNAs. Nucleic Acids Res. 1982 Nov 25;10(22):7323–7344. doi: 10.1093/nar/10.22.7323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Donis-Keller H. Phy M: an RNase activity specific for U and A residues useful in RNA sequence analysis. Nucleic Acids Res. 1980 Jul 25;8(14):3133–3142. doi: 10.1093/nar/8.14.3133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hori H., Osawa S. Evolutionary change in 5S RNA secondary structure and a phylogenic tree of 54 5S RNA species. Proc Natl Acad Sci U S A. 1979 Jan;76(1):381–385. doi: 10.1073/pnas.76.1.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hori H., Osawa S., Iwabuchi M. The nucleotide sequence of 5S rRNA from a cellular slime mold Dictyostelium discoideum. Nucleic Acids Res. 1980 Dec 11;8(23):5535–5539. doi: 10.1093/nar/8.23.5535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kuchino Y., Kato M., Sugisaki H., Nishimura S. Nucleotide sequence of starfish initiator tRNA. Nucleic Acids Res. 1979 Aug 10;6(11):3459–3469. doi: 10.1093/nar/6.11.3459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kumazaki T., Hori H., Osawa S. The nucleotide sequence of 5 S ribosomal RNA from a protozoan species Chilomonas paramecium belonging to the class Phytomastigophorea. FEBS Lett. 1982 Nov 29;149(2):281–284. doi: 10.1016/0014-5793(82)81117-4. [DOI] [PubMed] [Google Scholar]
  7. Nazar R. N., Wildeman A. G. Altered features in the secondary structure of Vicia faba 5.8s rRNA. Nucleic Acids Res. 1981 Oct 24;9(20):5345–5358. doi: 10.1093/nar/9.20.5345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Peattie D. A. Direct chemical method for sequencing RNA. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1760–1764. doi: 10.1073/pnas.76.4.1760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Peattie D. A., Douthwaite S., Garrett R. A., Noller H. F. A "bulged" double helix in a RNA-protein contact site. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7331–7335. doi: 10.1073/pnas.78.12.7331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Takaiwa F., Kusuda M., Saga N., Sugiura M. The nucleotide sequence of 5S rRNA from a red alga, Porphyra yezoensis. Nucleic Acids Res. 1982 Oct 11;10(19):6037–6040. doi: 10.1093/nar/10.19.6037. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES