Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1983 May 11;11(9):2857–2870. doi: 10.1093/nar/11.9.2857

Calorimetric and spectroscopic investigation of drug-DNA interactions. I. The binding of netropsin to poly d(AT).

L A Marky, K S Blumenfeld, K J Breslauer
PMCID: PMC325928  PMID: 6304658

Abstract

We report the first calorimetric investigation of netropsin binding to poly d(AT). Temperature-dependent uv absorption, circular dichroism (CD), batch calorimetry, and differential scanning calorimetry (DSC) were used to detect, monitor, and thermodynamically characterize the binding process. The following results have been obtained: 1) Netropsin groove binding is accompanied by a large exothermic enthalpy of 9.2 kcal/mol of drug bound at 25 degrees C. This indicates that a large negative binding enthalpy may be a necessary but not a sufficient criterion for drug intercalation. We suggest that the exothermic binding might be correlated with specific H-bonding interactions. 2) From the difference in DSC transition enthalpies in the presence and absence of netropsin, we calculate a binding enthalpy of -10.7 kcal/mol of netropsin at 88 degrees C. 3) We calculate a positive delta S for netropsin binding to poly d(AT) at 25 degrees C. This positive entropy change may reflect netropsin-induced release of condensed cations and/or bound water. 4) The netropsin-saturated duplex monophasically melts 46 degrees C higher than the free duplex. The unsaturated duplex melts through two thermally-resolved transitions that correspond to netropsin-free and netropsin-bound regions. These two regions interact dynamically with no substantial influence on the thermal stabilities of the separate domains. 5) Netropsin binding decreases the cooperativity of the duplex to single strand transition.

Full text

PDF
2857

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berman H. M., Neidle S., Zimmer C., Thrum H. Netropsin, a DNA-binding oligopeptide structural and binding studies. Biochim Biophys Acta. 1979 Jan 26;561(1):124–131. doi: 10.1016/0005-2787(79)90496-9. [DOI] [PubMed] [Google Scholar]
  2. Bierzynski A., Kim P. S., Baldwin R. L. A salt bridge stabilizes the helix formed by isolated C-peptide of RNase A. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2470–2474. doi: 10.1073/pnas.79.8.2470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dattagupta N., Hogan M., Crothers D. M. Interaction of netropsin and distamycin with deoxyribonucleic acid: electric dichroism study. Biochemistry. 1980 Dec 23;19(26):5998–6005. doi: 10.1021/bi00567a009. [DOI] [PubMed] [Google Scholar]
  4. Dickerson R. E., Drew H. R., Conner B. N., Wing R. M., Fratini A. V., Kopka M. L. The anatomy of A-, B-, and Z-DNA. Science. 1982 Apr 30;216(4545):475–485. doi: 10.1126/science.7071593. [DOI] [PubMed] [Google Scholar]
  5. Gralla J., Crothers D. M. Free energy of imperfect nucleic acid helices. 3. Small internal loops resulting from mismatches. J Mol Biol. 1973 Aug 5;78(2):301–319. doi: 10.1016/0022-2836(73)90118-6. [DOI] [PubMed] [Google Scholar]
  6. INMAN R. B., BALDWIN R. L. Helix-random coil transitions in synthetic DNAs of alternating sequence. J Mol Biol. 1962 Aug;5:172–184. doi: 10.1016/s0022-2836(62)80082-5. [DOI] [PubMed] [Google Scholar]
  7. Jackson W. M., Brandts J. F. Thermodynamics of protein denaturation. A calorimetric study of the reversible denaturation of chymotrypsinogen and conclusions regarding the accuracy of the two-state approximation. Biochemistry. 1970 May 26;9(11):2294–2301. doi: 10.1021/bi00813a011. [DOI] [PubMed] [Google Scholar]
  8. Luck G., Triebel H., Waring M., Zimmer C. Conformation dependent binding of netropsin and distamycin to DNA and DNA model polymers. Nucleic Acids Res. 1974 Mar;1(3):503–530. doi: 10.1093/nar/1.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Manning G. S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys. 1978 May;11(2):179–246. doi: 10.1017/s0033583500002031. [DOI] [PubMed] [Google Scholar]
  10. Marck C., Kakiuchi N., Guschlbauer W. Specific interaction of netropsin, distamycin-3 and analogs with LC duplexes: reversion towards the B form of the 2'-deoxy-.2'-deoxy-2'-fluoro-hybrid duplexes upon specific interaction with netropsin, distamycin-3 and analogs. Nucleic Acids Res. 1982 Oct 11;10(19):6147–6161. doi: 10.1093/nar/10.19.6147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Marky L. A., Canuel L., Jones R. A., Breslauer K. J. Calorimetric and spectroscopic investigation of the helix-to-coil transition of the self-complementary deoxyribonucleotide ATGCAT. Biophys Chem. 1981 Apr;13(2):141–149. doi: 10.1016/0301-4622(81)80013-0. [DOI] [PubMed] [Google Scholar]
  12. Marky L. A., Patel D., Breslauer K. J. Effect of tetramethylammonium ion on the helix-to-coil transition of poly(deoxyadenylylthymidine): a nuclear magnetic resonance and calorimetric investigation. Biochemistry. 1981 Mar 17;20(6):1427–1431. doi: 10.1021/bi00509a004. [DOI] [PubMed] [Google Scholar]
  13. McGhee J. D. Theoretical calculations of the helix-coil transition of DNA in the presence of large, cooperatively binding ligands. Biopolymers. 1976 Jul;15(7):1345–1375. doi: 10.1002/bip.1976.360150710. [DOI] [PubMed] [Google Scholar]
  14. Patel D. J. Antibiotic-DNA interactions: intermolecular nuclear Overhauser effects in the netropsin-d(C-G-C-G-A-A-T-T-C-G-C-G) complex in solution. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6424–6428. doi: 10.1073/pnas.79.21.6424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Patel D. J., Canuel L. L. Netropsin-poly(dA-dT) complex in solution: structure and dynamics of antibiotic-free base pair regions and those centered on bound netropsin. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5207–5211. doi: 10.1073/pnas.74.12.5207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Patel D. J., Kozlowski S. A., Marky L. A., Broka C., Rice J. A., Itakura K., Breslauer K. J. Premelting and melting transitions in the d(CGCGAATTCGCG) self-complementary duplex in solution. Biochemistry. 1982 Feb 2;21(3):428–436. doi: 10.1021/bi00532a002. [DOI] [PubMed] [Google Scholar]
  17. Patel D. J. Netropsin . dG-dG-dA-dA-dT-dT-dC-dC complex. Antibiotic binding at adenine . thymine base pairs in the minor groove of the self-complementary octanucleotide duplex. Eur J Biochem. 1979 Sep;99(2):369–378. doi: 10.1111/j.1432-1033.1979.tb13265.x. [DOI] [PubMed] [Google Scholar]
  18. Patel D. J., Pardi A., Itakura K. DNA conformation, dynamics, and interactions in solution. Science. 1982 May 7;216(4546):581–590. doi: 10.1126/science.6280281. [DOI] [PubMed] [Google Scholar]
  19. Record M. T., Jr, Anderson C. F., Lohman T. M. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q Rev Biophys. 1978 May;11(2):103–178. doi: 10.1017/s003358350000202x. [DOI] [PubMed] [Google Scholar]
  20. SUSI H., TIMASHEFF S. N., ARD J. S. NEAR INFRARED INVESTIGATION OF INTERAMIDE HYDROGEN BONDING IN AQUEOUS SOLUTION. J Biol Chem. 1964 Sep;239:3051–3054. [PubMed] [Google Scholar]
  21. Scheffler I. E., Sturtevant J. M. Thermodynamics of the helix-coil transition of the alternating copolymer of deoxyadenylic acid and deoxythymidylic acid. J Mol Biol. 1969 Jun 28;42(3):577–580. doi: 10.1016/0022-2836(69)90244-7. [DOI] [PubMed] [Google Scholar]
  22. Waring M. J. DNA modification and cancer. Annu Rev Biochem. 1981;50:159–192. doi: 10.1146/annurev.bi.50.070181.001111. [DOI] [PubMed] [Google Scholar]
  23. Zimmer C. Effects of the antibiotics netropsin and distamycin A on the structure and function of nucleic acids. Prog Nucleic Acid Res Mol Biol. 1975;15(0):285–318. doi: 10.1016/s0079-6603(08)60122-1. [DOI] [PubMed] [Google Scholar]
  24. Zimmer C., Kakiuchi N., Guschlbauer W. Differential stabilization by netropsin of inducible B-like conformations in deoxyribo-, ribo- and 2'-deoxy-2'-fluororibo-adenosine containing duplexes of (dA)n . (dT)n and (dA)n . (dU)na. Nucleic Acids Res. 1982 Mar 11;10(5):1721–1732. doi: 10.1093/nar/10.5.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zimmer C., Luck G., Fric I. Duplex structure formation between oligo(dA)'s and oligo(dT)'s generated by thymine-specific interaction with netropsin. Nucleic Acids Res. 1976 Jun;3(6):1521–1532. doi: 10.1093/nar/3.6.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zimmer C., Marck C., Schneider C., Guschlbauer W. Influence of nucleotide sequence on dA.dT-specific binding of Netropsin to double stranded DNA. Nucleic Acids Res. 1979 Jun 25;6(8):2831–2837. doi: 10.1093/nar/6.8.2831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zimmer C., Marck C., Schneider C., Thiele D., Luck G., Guschlbauer W. Magnetic circular dichroism study of the binding of netropsin and distamycin A with DNA. Biochim Biophys Acta. 1980 Apr 30;607(2):232–246. doi: 10.1016/0005-2787(80)90076-3. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES