Abstract
A frequently used method of comparing large RNA molecules employs the two-dimensional display of oligonucleotides generated through the action of specific RNases (oligonucleotide mapping, fingerprinting). Using computer simulations and simple analytic expressions the number of large RNase T1-resistant oligonucleotides obtained from random RNA sequences can be estimated. The computer simulations also permit estimation of the number of large oligonucleotides which remain unchanged as random variations are introduced into a random RNA sequence. In addition, computer analysis also provides a means of estimating statistical confidence limits to be used in a quantitative comparison of fingerprints of different RNA molecules. The model shows that two RNA sequences which differ overall by 1%, 5% or 10% share, on average, only 85%, 50% or 25%, respectively, of their large oligonucleotides. Thus, the use of fingerprint analysis is recommended only when closely related RNAs or regions of RNAs are compared (sequence homology greater than 90%).
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Fischer S. G., Lerman L. S. Separation of random fragments of DNA according to properties of their sequences. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4420–4424. doi: 10.1073/pnas.77.8.4420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frisby D. Oligonucleotide mapping of non-radioactive virus and messenger RNAs. Nucleic Acids Res. 1977 Sep;4(9):2975–2996. doi: 10.1093/nar/4.9.2975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jou W. M., Verhoeyen M., Devos R., Saman E., Fang R., Huylebroeck D., Fiers W., Threlfall G., Barber C., Carey N. Complete structure of the hemagglutinin gene from the human influenza A/Victoria/3/75 (H3N2) strain as determined from cloned DNA. Cell. 1980 Mar;19(3):683–696. doi: 10.1016/s0092-8674(80)80045-6. [DOI] [PubMed] [Google Scholar]
- Pedersen F. S., Haseltine W. A. A micromethod for detailed characterization of high molecular weight RNA. Methods Enzymol. 1980;65(1):680–687. doi: 10.1016/s0076-6879(80)65066-6. [DOI] [PubMed] [Google Scholar]
- Székely M., Sanger F. Use of polynucleotide kinase in fingerprinting non-radioactive nucleic acids. J Mol Biol. 1969 Aug 14;43(3):607–617. doi: 10.1016/0022-2836(69)90362-3. [DOI] [PubMed] [Google Scholar]
- de Wachter R., Fiers W. Preparative two-dimensional polyacrylamide gel electrophoresis of 32 P-labeled RNA. Anal Biochem. 1972 Sep;49(1):184–197. doi: 10.1016/0003-2697(72)90257-6. [DOI] [PubMed] [Google Scholar]
