Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1982 Feb 11;10(3):1105–1112. doi: 10.1093/nar/10.3.1105

Nucleotide sequence of the bacteriophage T4 gene 57 and a deduced amino acid sequence.

R Herrmann
PMCID: PMC326225  PMID: 7063418

Abstract

A 693 basepair cloned fragment of bacteriophage T4 DNA, which supports specifically growth of T4 amber mutants in gene 57, has been sequenced. A polypeptide can be deduced from this sequence, that is either 54 or 60 amino acids long depending which of two AUG codons, 18 nucleotides apart, are used for initiation. The size of this deduced polypeptide is compatible with the size of a single polypeptide (based on polyacrylamide gel electrophoresis) synthesized in vivo in E. coli under the direction of the cloned T4 DNA fragment.

Full text

PDF
1105

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dunn J. J., Buzash-Pollert E., Studier F. W. Mutations of bacteriophage T7 that affect initiation of synthesis of the gene 0.3 protein. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2741–2745. doi: 10.1073/pnas.75.6.2741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Fukada K., Gossens L., Abelson J. The cloning of a T4 transfer RNA gene cluster. J Mol Biol. 1980 Feb 25;137(2):213–234. doi: 10.1016/0022-2836(80)90326-5. [DOI] [PubMed] [Google Scholar]
  3. Herrmann R., Neugebauer K., Pirkl E., Zentgraf H., Schaller H. Conversion of bacteriophage fd into an efficient single-stranded DNA vector system. Mol Gen Genet. 1980 Jan;177(2):231–242. doi: 10.1007/BF00267434. [DOI] [PubMed] [Google Scholar]
  4. Herrmann R., Wood W. B. Assembly of bacteriophage T4 tail fibers: identification and characterization of the nonstructural protein gp57. Mol Gen Genet. 1981;184(1):125–132. doi: 10.1007/BF00271208. [DOI] [PubMed] [Google Scholar]
  5. Johnson R. A., Walseth T. F. The enzymatic preparation of [alpha-32P]ATP, [alpha-32P]GTP, [32P]cAMP, and [32P]cGMP, and their use in the assay of adenylate and guanylate cyclases and cyclic nucleotide phosphodiesterases. Adv Cyclic Nucleotide Res. 1979;10:135–167. [PubMed] [Google Scholar]
  6. Kupersztoch-Portnoy Y. M., Lovett M. A., Helinski D. R. Strand and site specificity of the relaxation event for the relaxation complex of the antibiotic resistance plasmid R6K. Biochemistry. 1974 Dec 31;13(27):5484–5490. doi: 10.1021/bi00724a005. [DOI] [PubMed] [Google Scholar]
  7. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  8. Meyer T. F., Beyreuther K., Geider K. Recognition of two initiation codons for the synthesis of phage fd gene 2 protein. Mol Gen Genet. 1980;180(3):489–494. doi: 10.1007/BF00268051. [DOI] [PubMed] [Google Scholar]
  9. Osterburg G., Sommer R. Computer support of DNA sequence analysis. Comput Programs Biomed. 1981 Mar-Jun;13(1-2):101–109. doi: 10.1016/0010-468x(81)90088-x. [DOI] [PubMed] [Google Scholar]
  10. Revel H. R., Herrmann R., Bishop R. J. Genetic analysis of T4 tail fiber assembly. II. Bacterial host mutants that allow bypass of T4 gene 57 function. Virology. 1976 Jul 1;72(1):255–265. doi: 10.1016/0042-6822(76)90328-7. [DOI] [PubMed] [Google Scholar]
  11. Roberts R. J., Breitmeyer J. B., Tabachnik N. F., Myers P. A. A second specific endonuclease from Haemophilus aegyptius. J Mol Biol. 1975 Jan 5;91(1):121–123. doi: 10.1016/0022-2836(75)90375-7. [DOI] [PubMed] [Google Scholar]
  12. Rosenberg M., Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet. 1979;13:319–353. doi: 10.1146/annurev.ge.13.120179.001535. [DOI] [PubMed] [Google Scholar]
  13. Sanger F., Coulson A. R. The use of thin acrylamide gels for DNA sequencing. FEBS Lett. 1978 Mar 1;87(1):107–110. doi: 10.1016/0014-5793(78)80145-8. [DOI] [PubMed] [Google Scholar]
  14. Shenk T. E., Rhodes C., Rigby P. W., Berg P. Biochemical method for mapping mutational alterations in DNA with S1 nuclease: the location of deletions and temperature-sensitive mutations in simian virus 40. Proc Natl Acad Sci U S A. 1975 Mar;72(3):989–993. doi: 10.1073/pnas.72.3.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. doi: 10.1073/pnas.71.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Steitz J. A., Jakes K. How ribosomes select initiator regions in mRNA: base pair formation between the 3' terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4734–4738. doi: 10.1073/pnas.72.12.4734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wood W. B., Revel H. R. The genome of bacteriophage T4. Bacteriol Rev. 1976 Dec;40(4):847–868. doi: 10.1128/br.40.4.847-868.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES