Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1983 Sep 10;11(17):5989–6001. doi: 10.1093/nar/11.17.5989

Effect of 2'-O-methylation on the structure of mammalian 5.8S rRNAs and the 5.8S-28S rRNA junction.

R N Nazar, A C Lo, A G Wildeman, T O Sitz
PMCID: PMC326331  PMID: 6412214

Abstract

The mammalian 5.8S rRNA contains a partially 2'-O-methylated uridylic acid residue at position 14 which is largely or entirely methylated in the cytoplasm (Nazar, R.N., Sitz, T.O. and Sommers, K.D. (1980) J. Mol. Biol. 142, 117-121). The effect of this methylation on the 5.8S RNA structure and 5.8-28S rRNA junction was investigated using both chemical and physical approaches. Electrophoretic studies indicated that the free 5.8S rRNA can take on at least two different conformations and that the 2'-O-methylation at U14 restricts the molecule to the more hydrodynamically open form. Structural studies using limited pancreatic or T1 ribonuclease digestion indicated that the methylated conformation was more susceptible to digestion, consistent with a more open tertiary structure. Modification-exclusion studies indicated that the first 29 nucleotides at the 5' end and residues 140 through 158 at the 3' end affect the 5.8S-28S rRNA interaction, supporting previous suggestions that the 5.8S RNA interacts with its cognate high molecular weight component through its termini. These results also suggested that the 2'-O-methylated uridylic acid residue plays a role in the 5.8S-28S rRNA interaction and thermal denaturation studies confirmed this by showing that methylation destabilizes the 5.8S-28S rRNA junction. The 5.8-28S rRNA interaction appears to be more complex than previously believed.

Full text

PDF
5989

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brand R. C., Klootwijk J., Van Steenbergen T. J., De Kok A. J., Planta R. J. Secondary methylation of yeast ribosomal precursor RNA. Eur J Biochem. 1977 May 2;75(1):311–318. doi: 10.1111/j.1432-1033.1977.tb11531.x. [DOI] [PubMed] [Google Scholar]
  2. Eladari M. E., Hampe A., Galibert F. Nucleotide sequence neighbouring a late modified guanylic residue within the 28S ribosomal RNA of several eukaryotic cells. Nucleic Acids Res. 1977 Jun;4(6):1759–1767. doi: 10.1093/nar/4.6.1759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Forget B. G., Weissman S. M. Low molecular weight RNA components from KB cells. Nature. 1967 Mar 4;213(5079):878–882. doi: 10.1038/213878a0. [DOI] [PubMed] [Google Scholar]
  4. Kelly J. M., Cox R. A. The nucleotide sequence at the 3'-end of Neurospora crassa 25S-rRNA and the location of a 5.8S-rRNA binding site. Nucleic Acids Res. 1981 Mar 11;9(5):1111–1121. doi: 10.1093/nar/9.5.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kelly J. M., Goddard J. P. Evidence on the conformation of HeLa-cell 5.8 S rRNA during interaction with 28 S rRNA. Biosci Rep. 1981 May;1(5):413–422. doi: 10.1007/BF01116191. [DOI] [PubMed] [Google Scholar]
  6. Kim S. H., Suddath F. L., Quigley G. J., McPherson A., Sussman J. L., Wang A. H., Seeman N. C., Rich A. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science. 1974 Aug 2;185(4149):435–440. doi: 10.1126/science.185.4149.435. [DOI] [PubMed] [Google Scholar]
  7. Lane B. G., Tamaoki T. Methylated bases and sugars in 16-S and 28-S RNA from L cells. Biochim Biophys Acta. 1969 Apr 22;179(2):332–340. doi: 10.1016/0005-2787(69)90041-0. [DOI] [PubMed] [Google Scholar]
  8. Lo A. C., Nazar R. N. Topography of 5.8 S rRNA in rat liver ribosomes. Identification of diethyl pyrocarbonate-reactive sites. J Biol Chem. 1982 Apr 10;257(7):3516–3524. [PubMed] [Google Scholar]
  9. MacKay R. M., Doolittle W. F. Nucleotide sequences of Acanthamoeba castellanii 5S and 5.8S ribosomal ribonucleic acids: phylogenetic and comparative structural analyses. Nucleic Acids Res. 1981 Jul 24;9(14):3321–3334. doi: 10.1093/nar/9.14.3321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. MacKay R. M., Spencer D. F., Schnare M. N., Doolittle W. F., Gray M. W. Comparative sequence analysis as an approach to evaluating structure, function, and evolution of 5S and 5.8S ribosomal RNAs. Can J Biochem. 1982 Apr;60(4):480–489. doi: 10.1139/o82-057. [DOI] [PubMed] [Google Scholar]
  11. Maden B. E. Effect of amino acid starvation on ribosome formation in HeLa cells. Ribosomal labelling patterns in cells deprived of different individual amino acids. Biochim Biophys Acta. 1972 Oct 27;281(3):396–398. [PubMed] [Google Scholar]
  12. Maden B. E., Salim M. The methylated nucleotide sequences in HELA cell ribosomal RNA and its precursors. J Mol Biol. 1974 Sep 5;88(1):133–152. doi: 10.1016/0022-2836(74)90299-x. [DOI] [PubMed] [Google Scholar]
  13. Nazar R. N., Owens T. W., Sitz T. O., Busch H. Maturation pathway for Novikoff ascites hepatoma 5.8 S ribosomal ribonucleic acid. Evidence for its presence in 32 S nuclear ribonucleic acid. J Biol Chem. 1975 Apr 10;250(7):2475–2481. [PubMed] [Google Scholar]
  14. Nazar R. N., Sitz T. O., Busch H. Structural analyses of mammalian ribosomal ribonucleic acid and its precursors. Nucleotide sequence of ribosomal 5.8 S ribonucleic acid. J Biol Chem. 1975 Nov 25;250(22):8591–8597. [PubMed] [Google Scholar]
  15. Nazar R. N., Sitz T. O., Busch H. Tissue specific differences in the 2'-O-methylation of eukaryotic 5.8S ribosomal RNA. FEBS Lett. 1975 Nov 1;59(1):83–87. doi: 10.1016/0014-5793(75)80346-2. [DOI] [PubMed] [Google Scholar]
  16. Nazar R. N., Sitz T. O. Role of the 5'-terminal sequence in the RNA binding site of yeast 5.8 S rRNA. FEBS Lett. 1980 Jun 16;115(1):71–76. doi: 10.1016/0014-5793(80)80729-0. [DOI] [PubMed] [Google Scholar]
  17. Nazar R. N., Sitz T. O., Somers K. D. Cytoplasmic methylation of mature 5.8 S ribosomal RNA. J Mol Biol. 1980 Sep 5;142(1):117–121. doi: 10.1016/0022-2836(80)90209-0. [DOI] [PubMed] [Google Scholar]
  18. Nazar R. N. Studies on the 5' termini of Novikoff ascites hepatoma ribosomal precursor RNA. Biochemistry. 1977 Jul 12;16(14):3215–3219. doi: 10.1021/bi00633a027. [DOI] [PubMed] [Google Scholar]
  19. Nazar R. N. The release and reassociation of 5.8 S rRNA with yeast ribosomes. J Biol Chem. 1978 Jul 10;253(13):4505–4507. [PubMed] [Google Scholar]
  20. Nazar R. N., Wildeman A. G. Altered features in the secondary structure of Vicia faba 5.8s rRNA. Nucleic Acids Res. 1981 Oct 24;9(20):5345–5358. doi: 10.1093/nar/9.20.5345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Oakden K. M., Azad A. A., Lane B. G. Wheat embryo ribonucleates. VII. Rapid, efficient and selective formation of 5S-18S and 5.8S-26S hybrids in an aqueous solution of the four ribosomal polynucleotides, and the results of a search for the corresponding hybrids in wheat embryo ribosomes. Can J Biochem. 1977 Jan;55(1):99–109. doi: 10.1139/o77-016. [DOI] [PubMed] [Google Scholar]
  22. Pace N. R., Walker T. A., Schroeder E. Structure of the 5.8S RNA component of the 5.8S-28S ribosomal RNA junction complex. Biochemistry. 1977 Nov 29;16(24):5321–5328. doi: 10.1021/bi00643a025. [DOI] [PubMed] [Google Scholar]
  23. Pavlakis G. N., Jordan B. R., Wurst R. M., Vournakis J. N. Sequence and secondary structure of Drosophila melanogaster 5.8S and 2S rRNAs and of the processing site between them. Nucleic Acids Res. 1979 Dec 20;7(8):2213–2238. doi: 10.1093/nar/7.8.2213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Peattie D. A. Direct chemical method for sequencing RNA. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1760–1764. doi: 10.1073/pnas.76.4.1760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Peattie D. A., Herr W. Chemical probing of the tRNA--ribosome complex. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2273–2277. doi: 10.1073/pnas.78.4.2273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pene J. J., Knight E., Jr, Darnell J. E., Jr Characterization of a new low molecular weight RNA in HeLa cell ribosomes. J Mol Biol. 1968 May 14;33(3):609–623. doi: 10.1016/0022-2836(68)90309-4. [DOI] [PubMed] [Google Scholar]
  27. Retèl J., van den Bos R. C., Planta R. J. Characteristics of the methylation in vivo of ribosomal RNA in yeast. Biochim Biophys Acta. 1969 Dec 16;195(2):370–380. doi: 10.1016/0005-2787(69)90643-1. [DOI] [PubMed] [Google Scholar]
  28. Schnare M. N., Gray M. W. Nucleotide sequence of an exceptionally long 5.8S ribosomal RNA from Crithidia fasciculata. Nucleic Acids Res. 1982 Mar 25;10(6):2085–2092. doi: 10.1093/nar/10.6.2085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Speirs J., Birnstiel M. Arrangement of the 5-8 S RNA cistrons in the genome of Xenopus laevis. J Mol Biol. 1974 Aug 5;87(2):237–256. doi: 10.1016/0022-2836(74)90146-6. [DOI] [PubMed] [Google Scholar]
  30. Stanners C. P., Eliceiri G. L., Green H. Two types of ribosome in mouse-hamster hybrid cells. Nat New Biol. 1971 Mar 10;230(10):52–54. doi: 10.1038/newbio230052a0. [DOI] [PubMed] [Google Scholar]
  31. Van Charldorp R., Heus H. A., Van Knippenberg P. H., Joordens J., De Bruin S. H., Hilbers C. W. Destabilization of secondary structure in 16S ribosomal RNA by dimethylation of two adjacent adenosines. Nucleic Acids Res. 1981 Sep 11;9(17):4413–4422. doi: 10.1093/nar/9.17.4413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vaughan M. H., Jr, Soeiro R., Warner J. R., Darnell J. E., Jr The effects of methionine deprivation on ribosome synthesis in HeLa cells. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1527–1534. doi: 10.1073/pnas.58.4.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Veldman G. M., Klootwijk J., de Regt V. C., Planta R. J., Branlant C., Krol A., Ebel J. P. The primary and secondary structure of yeast 26S rRNA. Nucleic Acids Res. 1981 Dec 21;9(24):6935–6952. doi: 10.1093/nar/9.24.6935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Weinberg R. A., Penman S. Processing of 45 s nucleolar RNA. J Mol Biol. 1970 Jan 28;47(2):169–178. doi: 10.1016/0022-2836(70)90337-2. [DOI] [PubMed] [Google Scholar]
  35. Weinberg R. A., Penman S. Small molecular weight monodisperse nuclear RNA. J Mol Biol. 1968 Dec;38(3):289–304. doi: 10.1016/0022-2836(68)90387-2. [DOI] [PubMed] [Google Scholar]
  36. Wildeman A. G., Nazar R. N. Studies on the secondary structure of 5.8 S rRNA from a thermophile, Thermomyces lanuginosus. J Biol Chem. 1981 Jun 10;256(11):5675–5682. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES