Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1983 Oct 11;11(19):6913–6921. doi: 10.1093/nar/11.19.6913

Long-range conformational transition in yeast tRNAPhe, induced by the Y-base removal and detected by chloroacetaldehyde modification.

W J Krzyzosiak, J Ciesiołka
PMCID: PMC326423  PMID: 6356038

Abstract

Chemical modification was used to study the conformational changes occurring in yeast tRNAPhe after the Y-base excision. The chemical probe was the adenine- and cytosine-specific reagent chloroacetaldehyde. Comparison of the modification patterns in tRNAPhe and tRNAPhe-Y shows that seven bases, adenines 35, 36 and 38 in the anticodon loop and adenines 73, 76 and cytosines 74, 75 in the 3'-terminus were modified in both tRNAs with a quantitative difference in the modification level of the anticodon loop bases. The most interesting, however, is the qualitative difference consisting in modification of cytosine-60 in the T psi C loop of tRNAPhe-Y. Some aspects of the mechanism of this long-distance conformational transition are briefly discussed.

Full text

PDF
6913

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biernat J., Ciesiołka J., Górnicki P., Adamiak R. W., Kryzosiak W. J., Wiewiórowski M. New observations concerning the chloroacetaldehyde reaction with some tRNA constituents. Stable intermediates, kinetics and selectivity of the reaction. Nucleic Acids Res. 1978 Mar;5(3):789–804. doi: 10.1093/nar/5.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cameron V., Uhlenbeck O. C. Removal of Y-37 from tRNA phe yeast alters oligomer binding to two loops. Biochem Biophys Res Commun. 1973 Feb 5;50(3):635–640. doi: 10.1016/0006-291x(73)91291-6. [DOI] [PubMed] [Google Scholar]
  3. Davanloo P., Sprinzl M., Cramer F. Proton nuclear magnetic resonance of minor nucleosides in yeast phenylalanine transfer ribonucleic acid. Conformational changes as a consequence of aminoacylation, removal of the Y base, and codon--anticodon interaction. Biochemistry. 1979 Jul 24;18(15):3189–3199. doi: 10.1021/bi00582a001. [DOI] [PubMed] [Google Scholar]
  4. Donis-Keller H., Maxam A. M., Gilbert W. Mapping adenines, guanines, and pyrimidines in RNA. Nucleic Acids Res. 1977 Aug;4(8):2527–2538. doi: 10.1093/nar/4.8.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goddard J. P. The structures and functions of transfer RNA. Prog Biophys Mol Biol. 1977;32(3):233–308. [PubMed] [Google Scholar]
  6. Johnston P. D., Redfield A. G. Nuclear magnetic resonance and nuclear Overhauser effect study of yeast phenylalanine transfer ribonucleic acid imino protons. Biochemistry. 1981 Mar 3;20(5):1147–1156. doi: 10.1021/bi00508a016. [DOI] [PubMed] [Google Scholar]
  7. Kearns D. R., Wong K. L., Wong Y. P. Effect of the removal of the Y base on the conformation of yeast tRNA. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3843–3846. doi: 10.1073/pnas.70.12.3843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kim S. H. Three-dimensional structure of transfer RNA. Prog Nucleic Acid Res Mol Biol. 1976;17:181–216. doi: 10.1016/s0079-6603(08)60070-7. [DOI] [PubMed] [Google Scholar]
  9. Krzyzosiak W. J., Biernat J., Ciesiołka J., Gulewicz K., Wiewiórowski M. The reaction of adenine and cytosine residues in tRNA with chloroacetaldehyde. Nucleic Acids Res. 1981 Jun 25;9(12):2841–2851. doi: 10.1093/nar/9.12.2841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lynch D. C., Schimmel P. R. Cooperative binding of magnesium to transfer ribonucleic acid studied by a fluorescent probe. Biochemistry. 1974 Apr 23;13(9):1841–1852. doi: 10.1021/bi00706a012. [DOI] [PubMed] [Google Scholar]
  11. Odom O. W., Hardesty B., Wintermeyer W., Zachau H. G. The effect of removal or replacement with proflavine of the Y base in the anticodon loop of yeast tRNAPhe on binding into the acceptor or donor sites of reticulocyte ribosomes. Arch Biochem Biophys. 1974 Jun;162(2):536–551. doi: 10.1016/0003-9861(74)90214-8. [DOI] [PubMed] [Google Scholar]
  12. Salemink P. J., Swarthof T., Hilbers C. W. Studies of yeast phenylalanine-accepting transfer ribonucleic acid backbone structure in solution by phosphorus-31 nuclear magnetic resonance spectroscopy. Biochemistry. 1979 Aug 7;18(16):3477–3485. doi: 10.1021/bi00583a007. [DOI] [PubMed] [Google Scholar]
  13. Schulman L. H., Pelka H. Location of accessible bases in Escherichia coli formylmethionine transfer RNA as determined by chemical modification. Biochemistry. 1976 Dec 28;15(26):5769–5775. doi: 10.1021/bi00671a013. [DOI] [PubMed] [Google Scholar]
  14. Sen G. C., Ghosh H. P. A fast and sensitive method for the analysis of modified nucleosides in tRNA. Anal Biochem. 1974 Apr;58(2):578–591. doi: 10.1016/0003-2697(74)90227-9. [DOI] [PubMed] [Google Scholar]
  15. Thiebe R., Zachau H. G. A specific modification next to the anticodon of phenylalanine transfer ribonucleic acid. Eur J Biochem. 1968 Sep 24;5(4):546–555. doi: 10.1111/j.1432-1033.1968.tb00404.x. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES