Abstract
The soybean chloroplast psb A gene (photosystem II thylakoid membrane protein of Mr 32 000, lysine-free) and the trn H gene (tRNAHisGUG), which both map in the large single copy region adjacent to one of the inverted repeat structures (IR1), have been sequenced including flanking regions. The psb A gene shows in its structural part 92% sequence homology with the corresponding genes of spinach and N. debneyi and contains also an open reading frame for 353 aminoacids. The aminoacid sequence of a potential primary translation product (calculated Mr, 38 904, no lysine) diverges from that of spinach and N. debneyi in only two positions in the C-terminal part. The trn H gene has the same polarity as the psb A gene and the coding region is located at the very end of the large single copy region. The deduced sequence of the soybean chloroplast tRNAHisGUG is identical with that of Zea mays chloroplasts. Both ends of the large single copy region were sequenced including a small segment of the adjacent IR1 and IR2.
Full text
PDF![7157](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c796/326446/e715221849cf/nar00365-0240.png)
![7158](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c796/326446/e5ce88a34c5a/nar00365-0241.png)
![7159](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c796/326446/2c1c277647cb/nar00365-0242.png)
![7160](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c796/326446/4cf31c6f8616/nar00365-0243.png)
![7161](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c796/326446/4c8698fa6b40/nar00365-0244.png)
![7162](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c796/326446/88079caef462/nar00365-0245.png)
![7163](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c796/326446/bf72c81f9981/nar00365-0246.png)
![7164](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c796/326446/376291a66d8e/nar00365-0247.png)
![7165](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c796/326446/6b2f1c5f089a/nar00365-0248.png)
![7166](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c796/326446/5dca78d4873a/nar00365-0249.png)
![7167](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c796/326446/6c606b1d6389/nar00365-0250.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bedbrook J. R., Link G., Coen D. M., Bogorad L. Maize plastid gene expressed during photoregulated development. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3060–3064. doi: 10.1073/pnas.75.7.3060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Driesel A. J., Speirs J., Bohnert H. J. Spinach chloroplast mRNA for a 32 000 dalton polypeptide: size and localization on the physical map of the chloroplast DNA. Biochim Biophys Acta. 1980 Dec 11;610(2):297–310. doi: 10.1016/0005-2787(80)90011-8. [DOI] [PubMed] [Google Scholar]
- Graf L., Roux E., Stutz E., Kössel H. Nucleotide sequence of a Euglena gracilis chloroplast gene coding for the 16S rRNA: homologies to E. coli and Zea mays chloroplast 16S rRNA. Nucleic Acids Res. 1982 Oct 25;10(20):6369–6381. doi: 10.1093/nar/10.20.6369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawley D. K., McClure W. R. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res. 1983 Apr 25;11(8):2237–2255. doi: 10.1093/nar/11.8.2237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffman-Falk H., Mattoo A. K., Marder J. B., Edelman M., Ellis R. J. General occurrence and structural similarity of the rapidly synthesized, 32,000-dalton protein of the chloroplast membrane. J Biol Chem. 1982 Apr 25;257(8):4583–4587. [PubMed] [Google Scholar]
- Hollingsworth M. J., Hallick R. B. Euglena gracilis chloroplast transfer RNA transcription units. Nucleotide sequence analysis of a tRNATyr-tRNAHis-tRNAMet-tRNATrp-tRNAGlu-tRNAGly gene cluster. J Biol Chem. 1982 Nov 10;257(21):12795–12799. [PubMed] [Google Scholar]
- Mattoo A. K., Pick U., Hoffman-Falk H., Edelman M. The rapidly metabolized 32,000-dalton polypeptide of the chloroplast is the "proteinaceous shield" regulating photosystem II electron transport and mediating diuron herbicide sensitivity. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1572–1576. doi: 10.1073/pnas.78.3.1572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
- Mubumbila M., Gordon K. H., Crouse E. J., Burkard G., Weil J. H. Construction of the physical map of the chloroplast DNA of Phaseolus vulgaris and localization of ribosomal and transfer RNA genes. Gene. 1983 Mar;21(3):257–266. doi: 10.1016/0378-1119(83)90009-4. [DOI] [PubMed] [Google Scholar]
- Palmer J. D., Edwards H., Jorgensen R. A., Thompson W. F. Novel evolutionary variation in transcription and location of two chloroplast genes. Nucleic Acids Res. 1982 Nov 11;10(21):6819–6832. doi: 10.1093/nar/10.21.6819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer J. D., Thompson W. F. Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. Cell. 1982 Jun;29(2):537–550. doi: 10.1016/0092-8674(82)90170-2. [DOI] [PubMed] [Google Scholar]
- Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
- Sanger F., Coulson A. R., Barrell B. G., Smith A. J., Roe B. A. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980 Oct 25;143(2):161–178. doi: 10.1016/0022-2836(80)90196-5. [DOI] [PubMed] [Google Scholar]
- Schwarz Z., Jolly S. O., Steinmetz A. A., Bogorad L. Overlapping divergent genes in the maize chloroplast chromosome and in vitro transcription of the gene for tRNA. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3423–3427. doi: 10.1073/pnas.78.6.3423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sprinzl M., Gauss D. H. Compilation of tRNA sequences. Nucleic Acids Res. 1982 Jan 22;10(2):r1–55. [PMC free article] [PubMed] [Google Scholar]
- Steinback K. E., McIntosh L., Bogorad L., Arntzen C. J. Identification of the triazine receptor protein as a chloroplast gene product. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7463–7467. doi: 10.1073/pnas.78.12.7463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zurawski G., Bohnert H. J., Whitfeld P. R., Bottomley W. Nucleotide sequence of the gene for the M(r) 32,000 thylakoid membrane protein from Spinacia oleracea and Nicotiana debneyi predicts a totally conserved primary translation product of M(r) 38,950. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7699–7703. doi: 10.1073/pnas.79.24.7699. [DOI] [PMC free article] [PubMed] [Google Scholar]