Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1981 Mar 11;9(5):1263–1269. doi: 10.1093/nar/9.5.1263

Reconstitution of biologically active 50S ribosomal subunits with artificial 5S RNA molecules carrying disturbances in the base pairing within the molecular stalk.

H A Raué, S Lorenz, V A Erdmann, R J Planta
PMCID: PMC326751  PMID: 6164987

Abstract

Bacillus stearothermophilus 50S ribosomal subunits were reconstituted in vitro using artificial 5S RNA molecules constructed by combining parts of major and minor type (Raué et al. (1976) Europ. J. Biochem. 68, 169-176) B. licheniformis 5S RNA. The artificial 5S RNA molecules carry defined disturbances (A.C juxtapositions and extra G.U pairs) in the base pairing between the 5'- and 3'-terminal sequences of the molecule (the molecular stalk region). The biological activity of the reconstituted subunits was determined in an E. coli cell-free system programmed with poly-U. The results show that conservation of the base pairing within the molecular stalk is not required for biological activity of 5S RNA. Disturbances of the base pairing within this region do reduce the rate of reconstitution, however. Normal base pairing in the molecular stalk is thus required to ensure efficient ribosome assembly.

Full text

PDF
1263

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cronenberger J. H., Erdmann V. A. Stimulation of polypeptide polymerization by blocking of free sulphydryl groups in Escherichia coli ribosomal proteins. J Mol Biol. 1975 Jun 15;95(1):125–137. doi: 10.1016/0022-2836(75)90340-x. [DOI] [PubMed] [Google Scholar]
  2. Delihas N., Dunn J. J., Erdmann V. A. The reaction of 5S RNA in 70S ribosomes with kethoxal. FEBS Lett. 1975 Oct 15;58(1):76–80. doi: 10.1016/0014-5793(75)80229-8. [DOI] [PubMed] [Google Scholar]
  3. Douthwaite S., Garrett R. A., Wagner R., Feunteun J. A ribonuclease-resistant region of 5S RNA and its relation to the RNA binding sites of proteins L18 and L25. Nucleic Acids Res. 1979 Jun 11;6(7):2453–2470. doi: 10.1093/nar/6.7.2453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Erdmann V. A. Collection of published 5S and 5.8S rRNA sequences and their precursors. Nucleic Acids Res. 1980 Jan 11;8(1):r31–r47. doi: 10.1093/nar/8.1.197-b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Erdmann V. A., Fahnestock S., Higo K., Nomura M. Role of 5S RNA in the functions of 50S ribosomal subunits. Proc Natl Acad Sci U S A. 1971 Dec;68(12):2932–2936. doi: 10.1073/pnas.68.12.2932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Erdmann V. A. Structure and function of 5S and 5.8 S RNA. Prog Nucleic Acid Res Mol Biol. 1976;18:45–90. [PubMed] [Google Scholar]
  7. Fox G. E., Woese C. R. 5S RNA secondary structure. Nature. 1975 Aug 7;256(5517):505–507. doi: 10.1038/256505a0. [DOI] [PubMed] [Google Scholar]
  8. Hassur S. M., Whitlock H. W., Jr UV shadowing--a new and convenient method for the location of ultraviolet-absorbing species in polyacrylamide gels. Anal Biochem. 1974 May;59(1):162–164. doi: 10.1016/0003-2697(74)90020-7. [DOI] [PubMed] [Google Scholar]
  9. Horne J. R., Erdmann V. A. Isolation and characterization of 5S RNA-protein complexes from Bacillus stearothermophilus and Escherichia coli ribosomes. Mol Gen Genet. 1972;119(4):337–344. doi: 10.1007/BF00272091. [DOI] [PubMed] [Google Scholar]
  10. Kearns D. R., Wong Y. P. Investigation of the secondary structure of Escherichia coli 5 S RNA by high-resolution nuclear magnetic resonance. J Mol Biol. 1974 Aug 25;87(4):755–774. doi: 10.1016/0022-2836(74)90083-7. [DOI] [PubMed] [Google Scholar]
  11. Rabin D., Crothers D. M. Analysis of RNA secondary structure by photochemical reversal of psoralen crosslinks. Nucleic Acids Res. 1979 Oct 10;7(3):689–703. doi: 10.1093/nar/7.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Raué H. A., Heerschap A., Planta R. J. Occurrence in Bacillus licheniformis of two species of 5-S RNA with multiple differences in primary structure. Eur J Biochem. 1976 Sep;68(1):169–176. doi: 10.1111/j.1432-1033.1976.tb10775.x. [DOI] [PubMed] [Google Scholar]
  13. Raué H. A., Rosner A., Planta R. J. Heterogeneity of the genes coding for 5 S RNA in three related strains of the genus Bacillus. Mol Gen Genet. 1977 Nov 14;156(2):185–193. doi: 10.1007/BF00283491. [DOI] [PubMed] [Google Scholar]
  14. Raué H. A., Stoof T. J., Planta R. J. Nucleotide sequence of 5-S RNA from Bacillus licheniformis. Eur J Biochem. 1975 Nov 1;59(1):35–42. doi: 10.1111/j.1432-1033.1975.tb02421.x. [DOI] [PubMed] [Google Scholar]
  15. Smith N., Matheson A. T., Yaguchi M., Willick G. E., Nazar R. N. The 5-S RNA . protein complex from an extreme halophile, Halobacterium cutirubrum. Purification and characterization. Eur J Biochem. 1978 Sep 1;89(2):501–509. doi: 10.1111/j.1432-1033.1978.tb12554.x. [DOI] [PubMed] [Google Scholar]
  16. Stiekema W. J., Raué H. A., Duin M. M., Planta R. J. Structural features of Bacillus precursor 5S RNA involved in the interaction with RNAase M5. Nucleic Acids Res. 1980 Nov 25;8(22):5411–5421. doi: 10.1093/nar/8.22.5411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vigne R., Jordan B. R. Conformational analysis of RNA molecules by partial RNAse digestion and two dimensional acrylamide gel electrophoresis. Application to E. coli 5S RNA. Biochimie. 1971;53(9):981–986. doi: 10.1016/s0300-9084(71)80066-4. [DOI] [PubMed] [Google Scholar]
  18. Wagner R., Garrett R. A. A new RNA-RNA crosslinking reagent and its application to ribosomal 5S RNA. Nucleic Acids Res. 1978 Nov;5(11):4065–4075. doi: 10.1093/nar/5.11.4065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Woese C. R., Magrum L. J., Gupta R., Siegel R. B., Stahl D. A., Kop J., Crawford N., Brosius J., Gutell R., Hogan J. J. Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. Nucleic Acids Res. 1980 May 24;8(10):2275–2293. doi: 10.1093/nar/8.10.2275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wrede P., Erdmann V. A. Activities of B. stearothermophilus 50 S ribosomes reconstituted with prokaryotic and eukaryotic 5 S RNA. FEBS Lett. 1973 Jul 15;33(3):315–319. doi: 10.1016/0014-5793(73)80219-4. [DOI] [PubMed] [Google Scholar]
  21. Zimmermann J., Erdmann V. A. Binding sites of E. coli and B. stearothermophilus ribosomal proteins on B stearothermophilus 5S RNA. Nucleic Acids Res. 1978 Jul;5(7):2267–2288. doi: 10.1093/nar/5.7.2267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zimmermann J., Erdmann V. A. Identification of Escherichia coli and Bacillus stearothermophilus ribosomal protein binding sites on Escherichia coli 5S RNA. Mol Gen Genet. 1978 Apr 17;160(3):247–257. doi: 10.1007/BF00332968. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES