Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1981 Mar 25;9(6):1383–1393. doi: 10.1093/nar/9.6.1383

Specific interaction of histone H1 with eukaryotic DNA.

T Diez-Caballero, F X Avilés, A Albert
PMCID: PMC326764  PMID: 7232218

Abstract

The interaction of calf thymus histone H1 with homologous and heterologous DNA has been studied at different ionic strengths. It has been found that about 0.5 M NaCl histone H1, and its fragments N-H1 (residues 1-72) and C-H1 (residues 73-C terminal), precipitate selectively a small fraction of calf thymus DNA. This selective precipitation is preserved up to very high values (less than 2.0) of the input histone H1/DNA ratio. The percentage of DNA insolubilized by histone H1 under these ionic conditions is dependent upon the molecular weight of the nucleic acid, diminishing from 18% fro a Mw equals 1.0 x 10(7) daltons to 5% for a Mw equals 8.0 x 10(4) daltons. The base composition of the precipitated DNA is similar to that of the bulk DNA. Calf thymus histone H1 also selectively precipitates a fraction of DNA from other eukaryotes (herring, trout), but not from some prokaryotes (E. coli, phage gamma. On the other hand, at 0.5 M NaCl, the whole calf thymus DNA (but not E. coli DNA) presents a limited number of binding sites for histone H1, the saturation ratio histone H1 bound/total DNA being similar to that found in chromatin. A similar behavior is observed from the histone H1 fragments, N-H1 and C-H1, which bind to DNA in complementary saturation ratios. It is suggested that in eukaryotic organisms histone H1 molecules maintain specific interactions with certain DNA sequences. A fraction of such specific complexes could act as nucleation points for the high-order levels of chromatin organization.

Full text

PDF
1383

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan J., Hartman P. G., Crane-Robinson C., Aviles F. X. The structure of histone H1 and its location in chromatin. Nature. 1980 Dec 25;288(5792):675–679. doi: 10.1038/288675a0. [DOI] [PubMed] [Google Scholar]
  2. Aviles F. J., Diez-Cabellero T., Palau J., Albert A. On the interaction of histone Hl and Hl peptides with DNA. Sedimentation, thermal denaturation and solubility studies. Biochimie. 1978 Sep 4;60(5):445–451. doi: 10.1016/s0300-9084(78)80858-x. [DOI] [PubMed] [Google Scholar]
  3. Billett M. A., Barry J. M. Role of histones in chromatin condensation. Eur J Biochem. 1974 Dec 2;49(3):477–484. doi: 10.1111/j.1432-1033.1974.tb03852.x. [DOI] [PubMed] [Google Scholar]
  4. Blumenfeld M., Orf J. W., Sina B. J., Kreber R. A., Callahan M. A., Mullins J. I., Snyder L. A. Correlation between phosphorylated H1 histones and satellite DNAs in Drosophila virilis. Proc Natl Acad Sci U S A. 1978 Feb;75(2):866–870. doi: 10.1073/pnas.75.2.866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradbury E. M., Cary P. D., Chapman G. E., Crane-Robinson C., Danby S. E., Rattle H. W., Boublik M., Palau J., Aviles F. J. Studies on the role and mode of operation of the very-lysine-rich histone H1 (F1) in eukaryote chromatin. The conformation of histone H1. Eur J Biochem. 1975 Apr 1;52(3):605–613. doi: 10.1111/j.1432-1033.1975.tb04032.x. [DOI] [PubMed] [Google Scholar]
  6. Bradbury E. M., Danby S. E., Rattle H. W., Giancotti V. Studies on the role and mode of operation of the very-lysine-rich histone H1 (F1) in eukaryote chromatin. Histone H1 in chromatin and in H1 - DNA complexes. Eur J Biochem. 1975 Sep 1;57(1):97–105. doi: 10.1111/j.1432-1033.1975.tb02280.x. [DOI] [PubMed] [Google Scholar]
  7. Bustin M., Cole R. D. Bisection of a lysine-rich histone by N-bromosuccinimide. J Biol Chem. 1969 Oct 10;244(19):5291–5294. [PubMed] [Google Scholar]
  8. Comings D. E., Tack L. O. Non-histone proteins. The effect of nuclear washes and comparison of metaphase and interphase chromatin. Exp Cell Res. 1973 Nov;82(1):175–191. doi: 10.1016/0014-4827(73)90260-7. [DOI] [PubMed] [Google Scholar]
  9. Finch J. T., Klug A. Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1897–1901. doi: 10.1073/pnas.73.6.1897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Johns E. W. Studies on histones. 7. Preparative methods for histone fractions from calf thymus. Biochem J. 1964 Jul;92(1):55–59. doi: 10.1042/bj0920055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Johns E. W. The electrophoresis of histones in polyacrylamide gel and their quantitative determination. Biochem J. 1967 Jul;104(1):78–82. doi: 10.1042/bj1040078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kornberg R. D. Structure of chromatin. Annu Rev Biochem. 1977;46:931–954. doi: 10.1146/annurev.bi.46.070177.004435. [DOI] [PubMed] [Google Scholar]
  13. Macaya G., Cortadas J., Bernardi G. An analysis of the bovine genome by density-gradient centrifugation. Preparation of the dG+dC-rich DNA components. Eur J Biochem. 1978 Mar;84(1):179–188. doi: 10.1111/j.1432-1033.1978.tb12155.x. [DOI] [PubMed] [Google Scholar]
  14. Nelson P. P., Albright S. C., Wiseman J. M., Garrard W. T. Reassociation of histone H1 with nucleosomes. J Biol Chem. 1979 Nov 25;254(22):11751–11760. [PubMed] [Google Scholar]
  15. Noll M., Kornberg R. D. Action of micrococcal nuclease on chromatin and the location of histone H1. J Mol Biol. 1977 Jan 25;109(3):393–404. doi: 10.1016/s0022-2836(77)80019-3. [DOI] [PubMed] [Google Scholar]
  16. Oudet P., Gross-Bellard M., Chambon P. Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell. 1975 Apr;4(4):281–300. doi: 10.1016/0092-8674(75)90149-x. [DOI] [PubMed] [Google Scholar]
  17. Plucienniczak A., Bartkowiak J., Krzywiec A., Panusz H. Fractionation of calf thymus DNA based on its interaction with homologeous f-1 histone. Melting curves of the obtained fractions. Biochem Biophys Res Commun. 1974 Feb 4;56(3):799–806. doi: 10.1016/0006-291x(74)90676-7. [DOI] [PubMed] [Google Scholar]
  18. Poliakow M. C., Champagne M. H., Daune M. P. Interactions protéines-acides nucléiques. 2. Etude de l'association d'histones riches en lysine avec le DN. Eur J Biochem. 1972 Mar 27;26(2):212–219. doi: 10.1111/j.1432-1033.1972.tb01759.x. [DOI] [PubMed] [Google Scholar]
  19. Renz M., Day L. A. Transition from noncooperative to cooperative and selective binding of histone H1 to DNA. Biochemistry. 1976 Jul 27;15(15):3220–3228. doi: 10.1021/bi00660a010. [DOI] [PubMed] [Google Scholar]
  20. Renz M., Nehls P., Hozier J. Involvement of histone H1 in the organization of the chromosome fiber. Proc Natl Acad Sci U S A. 1977 May;74(5):1879–1883. doi: 10.1073/pnas.74.5.1879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sherod D., Johnson G., Chalkley R. Studies on the hetrogeneity of lysine-rich histones in dividing cells. J Biol Chem. 1974 Jun 25;249(12):3923–3931. [PubMed] [Google Scholar]
  22. Simpson R. T. Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones. Biochemistry. 1978 Dec 12;17(25):5524–5531. doi: 10.1021/bi00618a030. [DOI] [PubMed] [Google Scholar]
  23. Spadafora C., Oudet P., Chambon P. Rearrangement of chromatin structure induced by increasing ionic strength and temperature. Eur J Biochem. 1979 Oct;100(1):225–235. doi: 10.1111/j.1432-1033.1979.tb02053.x. [DOI] [PubMed] [Google Scholar]
  24. Stein S., Böhlen P., Udenfriend S. Studies on the kinetics of reaction and hydrolysis of fluorescamine. Arch Biochem Biophys. 1974 Jul;163(1):400–403. doi: 10.1016/0003-9861(74)90491-3. [DOI] [PubMed] [Google Scholar]
  25. Steinmetz M., Streeck R. E., Zachau H. G. Closely spaced nucleosome cores in reconstituted histone.DNA complexes and histone-H1-depleted chromatin. Eur J Biochem. 1978 Feb;83(2):615–628. doi: 10.1111/j.1432-1033.1978.tb12131.x. [DOI] [PubMed] [Google Scholar]
  26. Vogel T., Singer M. F. The effect of superhelicity on the interaction of histone f1 with closed circular duplex DNA. J Biol Chem. 1976 Apr 25;251(8):2334–2338. [PubMed] [Google Scholar]
  27. Yaguchi M., Roy C., Seligy V. L. Complete amino acid sequence of goose erythrocyte H5 histone and the homology between H1 and H5 histones. Biochem Biophys Res Commun. 1979 Oct 29;90(4):1400–1406. doi: 10.1016/0006-291x(79)91191-4. [DOI] [PubMed] [Google Scholar]
  28. Zimmerman S. B., Levin C. J. Do histones bind to a specific group of DNA sequences in chromatin? A test based on DNA ligase action on reconstituted chromatin. Biochem Biophys Res Commun. 1975 Jan 20;62(2):357–361. doi: 10.1016/s0006-291x(75)80146-x. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES