Abstract
Incubation of Chinese hamster ovary (CHO) cells for 1 hour at 43 degrees C results in an inhibition of high molecular weight RNA synthesis while most of the ow molecular weight RNAs are still synthesized. In cells returned to 37 degrees C, the transcription of high molecular weight RNA is reinitiated after 7 h recovery. The synthesis of snRNA A, C, D which are transcribed by RNA polymerase B (II) is inhibited in cells incubated at 43 degrees C while the synthesis of 4S, 5S, L and K components is not affected. During the recovery period the synthesis of low molecular weight RNA is increased variously according to the components relative to control cells : x 1.5 for 5S RNA to x 8 for snK. After 9 h recovery at 37 degrees C, snA and SnD are again synthesized but newly synthesized snC does not appear in the nucleus while a putative preC component accumulates in the cytoplasm. On the other hand, the distribution of all the pre-existing low molecular weight RNAs is not affected by the heat shock.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amalric F., Bachellerie J. P., Caboche M. RNA methylation and control of eukaryotic RNA biosynthesis: processing and utilization of undermethylated tRNAs in CHO cells. Nucleic Acids Res. 1977 Dec;4(12):4357–4370. doi: 10.1093/nar/4.12.4357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benecke B. J., Penman S. A new class of small nuclear RNA molecules synthesized by a type I RNA polymerase in HeLa cells. Cell. 1977 Dec;12(4):939–946. doi: 10.1016/0092-8674(77)90158-1. [DOI] [PubMed] [Google Scholar]
- Bouche G., Amalric F., Caizergues-Ferrer M., Zalta J. P. Effects of heat shock on gene expression and subcellular protein distribution in Chinese hamster ovary cells. Nucleic Acids Res. 1979 Dec 11;7(7):1739–1747. doi: 10.1093/nar/7.7.1739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caizergues-Ferrer M., Bouche G., Amalric F. Phosphorylated proteins involved in the regulation of rRNA synthesis in CHO cells recovering from heat shock. FEBS Lett. 1980 Jul 28;116(2):261–264. doi: 10.1016/0014-5793(80)80658-2. [DOI] [PubMed] [Google Scholar]
- Caizergues-Ferrer M., Bouche G., Banville D., Amalric F. Effect of heat shock on RNA polymerase activities in Chinese hamster ovary cells. Biochem Biophys Res Commun. 1980 Nov 28;97(2):538–545. doi: 10.1016/0006-291x(80)90297-1. [DOI] [PubMed] [Google Scholar]
- Daskal Y., Komaromy L., Busch H. Isolation and partial characterization of perichromatin granules. A unique class of nuclear RNP particles. Exp Cell Res. 1980 Mar;126(1):39–46. doi: 10.1016/0014-4827(80)90468-1. [DOI] [PubMed] [Google Scholar]
- Frederiksen S., Hellung-Larsen P., Gram Jensen E. The differential inhibitory effect of alpha-amanitin on the synthesis of low molecular weight RNA components in BHK cells. FEBS Lett. 1978 Mar 15;87(2):227–231. doi: 10.1016/0014-5793(78)80338-x. [DOI] [PubMed] [Google Scholar]
- Frederiksen S., Pedersen I. R., Hellung-Larsen P., Engberg J. Metabolic studies of small molecular weight nuclear RNA components in BHK-21 cells. Biochim Biophys Acta. 1974 Feb 27;340(1):64–76. doi: 10.1016/0005-2787(74)90174-9. [DOI] [PubMed] [Google Scholar]
- Jelinek W., Leinwand L. Low molecular weight RNAs hydrogen-bonded to nuclear and cytoplasmic poly(A)-terminated RNA from cultured Chinese hamster ovary cells. Cell. 1978 Sep;15(1):205–214. doi: 10.1016/0092-8674(78)90095-8. [DOI] [PubMed] [Google Scholar]
- Jensen E. G., Hellung-Larsen P., Frederiksen S. Synthesis of low molecular weight RNA components A, C and D by polymerase II in alpha-amanitin-resistant hamster cells. Nucleic Acids Res. 1979 Jan;6(1):321–330. doi: 10.1093/nar/6.1.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lerner M. R., Boyle J. A., Mount S. M., Wolin S. L., Steitz J. A. Are snRNPs involved in splicing? Nature. 1980 Jan 10;283(5743):220–224. doi: 10.1038/283220a0. [DOI] [PubMed] [Google Scholar]
- Nijhawan P., Marzluff W. F. Metabolism of low molecular weight ribonucleic acids in early sea urchin embryos. Biochemistry. 1979 Apr 3;18(7):1353–1360. doi: 10.1021/bi00574a035. [DOI] [PubMed] [Google Scholar]
- Prestayko A. W., Tonato M., Busch H. Low molecular weight RNA associated with 28 s nucleolar RNA. J Mol Biol. 1970 Feb 14;47(3):505–515. doi: 10.1016/0022-2836(70)90318-9. [DOI] [PubMed] [Google Scholar]
- Simard R., Amalric F., Zalta J. P. Effet de la température supra-optimale sur les ribonucléoprotéines et le RNA nucléolaire. I. Etude ultrastructurale. Exp Cell Res. 1969 Jun;55(3):359–369. doi: 10.1016/0014-4827(69)90570-9. [DOI] [PubMed] [Google Scholar]
- Tiollais P., Galibert F., Lepetit A., Auger M. A. L'électrophorèse des acides ribonucléiques en gel de polyacrylamide. Biochimie. 1972;54(3):339–354. doi: 10.1016/s0300-9084(72)80213-x. [DOI] [PubMed] [Google Scholar]
- Warocquier R., Scherrer K. RNA metabolism in mammalian cells at elevated temperature. Eur J Biochem. 1969 Sep;10(2):362–370. doi: 10.1111/j.1432-1033.1969.tb00699.x. [DOI] [PubMed] [Google Scholar]
- Weinberg R. A., Penman S. Small molecular weight monodisperse nuclear RNA. J Mol Biol. 1968 Dec;38(3):289–304. doi: 10.1016/0022-2836(68)90387-2. [DOI] [PubMed] [Google Scholar]
- Zieve G., Penman S. Small RNA species of the HeLa cell: metabolism and subcellular localization. Cell. 1976 May;8(1):19–31. doi: 10.1016/0092-8674(76)90181-1. [DOI] [PubMed] [Google Scholar]