Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1981 May 11;9(9):2207–2222. doi: 10.1093/nar/9.9.2207

Identification of the modified nucleotides produced by covalent photoaddition of hydroxymethyltrimethylpsoralen to RNA.

J P Bachellerie, J F Thompson, M R Wegnez, J E Hearst
PMCID: PMC326836  PMID: 6170943

Abstract

The reaction between RNA and 4'hydroxymethyl-4,5',8-trimethylpsoralen has been studied. Both natural RNA and synthetic RNAs were used. The base specificity of the reaction was found to be the same in natural RNA, homopolymers, and mononucleotides. Uridine was found to be the most reactive base in all cases. The kinetics of formation and reversal of monoadducts and crosslinks has been examined. Paper electrophoretic conditions are described which provide a separation of the monoaddition and crosslinked photoproducts. The relative and absolute amounts of monoadducts and crosslinks can be determined very accurately with this system. Paper electrophoresis provides good separations of the different photoproducts. The mobilities of the products are a simple function of their molecular weights and charges.

Full text

PDF
2207

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cole R. S. Light-induced cross-linking of DNA in the presence of a furocoumarin (psoralen). Studies with phage lambda, Escherichia coli, and mouse leukemia cells. Biochim Biophys Acta. 1970 Sep 17;217(1):30–39. doi: 10.1016/0005-2787(70)90119-x. [DOI] [PubMed] [Google Scholar]
  2. Hanson C. V., Shen C. K., Hearst J. E. Cross-linking of DNA in situ as a probe for chromatin structure. Science. 1976 Jul 2;193(4247):62–64. doi: 10.1126/science.935855. [DOI] [PubMed] [Google Scholar]
  3. Isaacs S. T., Shen C. K., Hearst J. E., Rapoport H. Synthesis and characterization of new psoralen derivatives with superior photoreactivity with DNA and RNA. Biochemistry. 1977 Mar 22;16(6):1058–1064. doi: 10.1021/bi00625a005. [DOI] [PubMed] [Google Scholar]
  4. Johnston B. H., Johnson M. A., Moore C. B., Hearst J. E. Psoralen-DNA photoreaction: controlled production of mono- and diadducts with nanosecond ultraviolet laser pulses. Science. 1977 Aug 26;197(4306):906–908. doi: 10.1126/science.887929. [DOI] [PubMed] [Google Scholar]
  5. Krauch C. H., Krämer D. M., Wacker A. Zum Wirkungsmechanismus photodynamischer Furocumarine Photoreaktion von Psoralen-(4-14C) mit DNS, RNS, Homopolynucleotiden und Nucleosiden. Photochem Photobiol. 1967 May;6(5):341–354. doi: 10.1111/j.1751-1097.1967.tb08882.x. [DOI] [PubMed] [Google Scholar]
  6. Liu F. T., Yang N. C. Photochemistry of cytosine derivatives. 1. Photochemistry of thymidylyl-(3' leads to 5')-deoxycytidine. Biochemistry. 1978 Nov 14;17(23):4865–4876. doi: 10.1021/bi00616a003. [DOI] [PubMed] [Google Scholar]
  7. Musajo L., Bordin F., Caporale G., Marciani S., Rigatti G. Photoreactions at 3655 Angstrom between pyrimidine bases and skin-photosensitizing furocoumarins. Photochem Photobiol. 1967 Oct;6(10):711–719. doi: 10.1111/j.1751-1097.1967.tb08736.x. [DOI] [PubMed] [Google Scholar]
  8. Musajo L., Rodighiero G. Studies on the photo-C4-cyclo-addition reactions between skin-photosensitizing furocoumarins and nucleic acids. Photochem Photobiol. 1970 Jan;11(1):27–35. doi: 10.1111/j.1751-1097.1970.tb05714.x. [DOI] [PubMed] [Google Scholar]
  9. Ou C. N., Song P. S. Photobinding of 8-methoxypsoralen to transfer RNA and 5-fluorouracil-enriched transfer RNA. Biochemistry. 1978 Mar 21;17(6):1054–1059. doi: 10.1021/bi00599a018. [DOI] [PubMed] [Google Scholar]
  10. Pathak M. A., Krämer D. M. Photosensitization of skin in vivo by furocoumarins (psoralens). Biochim Biophys Acta. 1969 Nov 19;195(1):197–206. doi: 10.1016/0005-2787(69)90616-9. [DOI] [PubMed] [Google Scholar]
  11. Rabin D., Crothers D. M. Analysis of RNA secondary structure by photochemical reversal of psoralen crosslinks. Nucleic Acids Res. 1979 Oct 10;7(3):689–703. doi: 10.1093/nar/7.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sanger F., Brownlee G. G., Barrell B. G. A two-dimensional fractionation procedure for radioactive nucleotides. J Mol Biol. 1965 Sep;13(2):373–398. doi: 10.1016/s0022-2836(65)80104-8. [DOI] [PubMed] [Google Scholar]
  13. Shen C. K., Ikoku A., Hearst J. E. A specific DNA orientation in the filamentous bacteriophage fd as probed by psoralen crosslinking and electron microscopy. J Mol Biol. 1979 Jan 15;127(2):163–175. doi: 10.1016/0022-2836(79)90237-7. [DOI] [PubMed] [Google Scholar]
  14. Sommer S. S. Prediction of the electrophoretic mobilities of nucleotides on neutral paper. Anal Biochem. 1979 Sep 15;98(1):8–12. doi: 10.1016/0003-2697(79)90698-5. [DOI] [PubMed] [Google Scholar]
  15. Wieshahn G. P., Hyde J. E., Hearst J. E. The photoaddition of trimethylpsoralen to Drosophila melanogaster nuclei: a probe for chromatin substructure. Biochemistry. 1977 Mar 8;16(5):925–932. doi: 10.1021/bi00624a018. [DOI] [PubMed] [Google Scholar]
  16. Wollenzien P. L., Youvan D. C., Hearst J. E. Structure of psoralen-crosslinked ribosomal RNA from Drosophila melanogaster. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1642–1646. doi: 10.1073/pnas.75.4.1642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wollenzien P., Hearst J. E., Thammana P., Cantor C. R. Base-pairing between distant regions of the Escherichia coli 16 S ribosomal RNA in solution. J Mol Biol. 1979 Nov 25;135(1):255–269. doi: 10.1016/0022-2836(79)90351-6. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES