Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1981 Jun 11;9(11):2615–2627. doi: 10.1093/nar/9.11.2615

Effect of several metal ions on misincorporation during transcription.

S K Niyogi, R P Feldman
PMCID: PMC326876  PMID: 7024904

Abstract

By use of poly(dA-dT) as template and Escherichia coli RNA polymerase, several metal ions were tested for their effect on the efficiency of transcription and on the misincorporation of CMP into the poly(rA-rU) product. In the presence of 10 mM MgCl2, Mn2+ has a stimulatory effect on the transcription, Co2+ has very little effect on the reaction, Cu2+ and Zn2+ are strongly inhibitory, and Cd2+ and Ni2+ are less inhibitory. The background misincorporation of CMP in the presence of MgCl2 is about 1 nucleotide per 2000 correct nucleotides incorporated and is independent of Mg2+ concentration. Zn2+, Ca2+, Sr2+, Li+, Na+, and K+--all nonmutagenic and noncarcinogenic--do not increase misincorporation. Mn2+ causes a concentration-dependent threefold increase in the misincorporation that can be slightly reversed at higher MgCl2 concentrations. Cd2+ causes a dramatic increase in the misincorporation with increasing CdCl2 concentration that can be substantially overcome by higher concentrations of Mg2+. Cu2+ also increases the misincorporation, Ni2+ slightly increases it, and Co2+ does not increase it at all. Several control experiments indicate that the misincorporation of CMP is dependent on the template-directed synthesis of poly(rA-rU). Nearest-neighbor analysis indicates that CMP is incorporated in place of UMP into the poly(rA-rU) product. The increase in misincorporation appears to be related both to the "hard-soft" character of the metal ions and to their carcinogenic potential.

Full text

PDF
2615

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auld D. S., Atsuya I. Yeast RNA polymerase I: a eukaryotic zinc metalloenzyme. Biochem Biophys Res Commun. 1976 Mar 22;69(2):548–554. doi: 10.1016/0006-291x(76)90555-6. [DOI] [PubMed] [Google Scholar]
  2. Brutlag D., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. 36. A proofreading function for the 3' leads to 5' exonuclease activity in deoxyribonucleic acid polymerases. J Biol Chem. 1972 Jan 10;247(1):241–248. [PubMed] [Google Scholar]
  3. Bujard H., Heidelberger C. Fluorinated pyrimidines. XXVII. Attempts to determine transcription errors during the formation of fluorouracil-containing messenger ribonucleic acid. Biochemistry. 1966 Oct;5(10):3339–3345. doi: 10.1021/bi00874a037. [DOI] [PubMed] [Google Scholar]
  4. Burgess R. R. A new method for the large scale purification of Escherichia coli deoxyribonucleic acid-dependent ribonucleic acid polymerase. J Biol Chem. 1969 Nov 25;244(22):6160–6167. [PubMed] [Google Scholar]
  5. CHAMBERLIN M., BALDWIN R. L., BERG P. AN ENZYMICALLY SYNTHESIZED RNA OF ALTERNATING BASE SEQUENCE: PHYSICAL AND CHEMICAL CHARACTERIZATION. J Mol Biol. 1963 Oct;7:334–349. doi: 10.1016/s0022-2836(63)80028-5. [DOI] [PubMed] [Google Scholar]
  6. Chang L. M. Replication of initiated polyriboadenylic acid by mammalian low molecular weight deoxyribonucleic acid polymerase. J Biol Chem. 1974 Dec 10;249(23):7441–7446. [PubMed] [Google Scholar]
  7. Coleman J. E. The role of Zn(II) in transcription by T7 RNA polymerase. Biochem Biophys Res Commun. 1974 Sep 23;60(2):641–648. doi: 10.1016/0006-291x(74)90289-7. [DOI] [PubMed] [Google Scholar]
  8. Domingo E., Escarmis C., Warner R. C. Transcription of Azotobacter phage deoxyribonucleic acid. Salt-dependent equilibrium between steps in initiation. J Biol Chem. 1975 Apr 25;250(8):2872–2877. [PubMed] [Google Scholar]
  9. Eichhorn G. L., Shin Y. A. Interaction of metal ions with polynucleotides and related compounds. XII. The relative effect of various metal ions on DNA helicity. J Am Chem Soc. 1968 Dec 18;90(26):7323–7328. doi: 10.1021/ja01028a024. [DOI] [PubMed] [Google Scholar]
  10. Falchuk K. H., Mazus B., Ulpino L., Vallee B. L. Euglena gracilis DNA dependent RNA polymerase II: a zinc metalloenzyme. Biochemistry. 1976 Oct 5;15(20):4468–4475. doi: 10.1021/bi00665a021. [DOI] [PubMed] [Google Scholar]
  11. Fuchse, Millette R. L., Zillig W., Walter G. Influence of salts on RNA synthesis by DNA-dependent RNA-polymerase from Escherichia coli. Eur J Biochem. 1967 Dec;3(2):183–193. doi: 10.1111/j.1432-1033.1967.tb19514.x. [DOI] [PubMed] [Google Scholar]
  12. Fujimura R. K. Nucleotide analysis of deoxyribonucleic acid containing deoxybromouridylic acid. Anal Biochem. 1970 Jul;36(1):62–71. doi: 10.1016/0003-2697(70)90331-3. [DOI] [PubMed] [Google Scholar]
  13. Hall Z. W., Lehman I. R. An in vitro transversion by a mutationally altered T4-induced DNA polymerase. J Mol Biol. 1968 Sep 28;36(3):321–333. doi: 10.1016/0022-2836(68)90158-7. [DOI] [PubMed] [Google Scholar]
  14. Hoffman D. J., Niyogi S. K. Differential effects of sigma factor, ionic strength, and ribonucleoside triphosphate concentration on the transcription of phage T4 DNA with ribonucleic acid polymerase of Escherichia coli. Biochim Biophys Acta. 1973 Apr 11;299(4):588–595. doi: 10.1016/0005-2787(73)90231-1. [DOI] [PubMed] [Google Scholar]
  15. Hoffman D. J., Niyogi S. K. Metal mutagens and carcinogens affect RNA synthesis rates in a distinct manner. Science. 1977 Nov 4;198(4316):513–514. doi: 10.1126/science.910143. [DOI] [PubMed] [Google Scholar]
  16. Izatt R. M., Christensen J. J., Rytting J. H. Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides, and nucleotides. Chem Rev. 1971 Oct;71(5):439–481. doi: 10.1021/cr60273a002. [DOI] [PubMed] [Google Scholar]
  17. Jacobson K. B., Turner J. E. The interaction of cadmium and certain other metal ions with proteins and nucleic acids. Toxicology. 1980;16(1):1–37. doi: 10.1016/0300-483x(80)90107-9. [DOI] [PubMed] [Google Scholar]
  18. Khym J. X. An analytical system for rapid separation of tissue nucleotides at low pressures on conventional anion exchangers. Clin Chem. 1975 Aug;21(9):1245–1252. [PubMed] [Google Scholar]
  19. Lattke H., Weser U. Yeast RNA-polymerase B: A zinc protein. FEBS Lett. 1976 Jun 15;65(3):288–292. doi: 10.1016/0014-5793(76)80131-7. [DOI] [PubMed] [Google Scholar]
  20. Maitra U., Barash F. DNA-dependent synthesis of RNA by Escherichia coli RNA polymerase: release and reinitiation of RNA chains from DNA templates. Proc Natl Acad Sci U S A. 1969 Oct;64(2):779–786. doi: 10.1073/pnas.64.2.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mangel W. F., Chamberlin M. J. Studies of ribonucleic acid chain initiation by Escherichia coli ribonucleic acid polymerase bound to T7 deoxyribonucleic acid. II. The effect of alterations in ionic strength of chain initiation and on the conformation of binary complexes. J Biol Chem. 1974 May 25;249(10):3002–3006. [PubMed] [Google Scholar]
  22. Paetkau V., Coulter M. B., Flintoff W. F., Morgan A. R. Thymine-guanine base pairing during transcription of polydeoxypyrimidines in vitro. J Mol Biol. 1972 Nov 14;71(2):293–306. doi: 10.1016/0022-2836(72)90352-x. [DOI] [PubMed] [Google Scholar]
  23. Scrutton M. C., Wu C. W., Goldthwait D. A. The presence and possible role of zinc in RNA polymerase obtained from Escherichia coli. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2497–2501. doi: 10.1073/pnas.68.10.2497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sirover M. A., Loeb L. A. Infidelity of DNA synthesis in vitro: screening for potential metal mutagens or carcinogens. Science. 1976 Dec 24;194(4272):1434–1436. doi: 10.1126/science.1006310. [DOI] [PubMed] [Google Scholar]
  25. So A. G., Davie E. W., Epstein R., Tissières A. Effects of cations on DNA-dependent RNA polymerase. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1739–1746. doi: 10.1073/pnas.58.4.1739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Springgate C. F., Loeb L. A. On the fidelity of transcription by Escherichia coli ribonucleic acid polymerase. J Mol Biol. 1975 Oct 5;97(4):577–591. doi: 10.1016/s0022-2836(75)80060-x. [DOI] [PubMed] [Google Scholar]
  27. Stevens A. Studies of the ribonucleic acid polymerase from Escherichia coli. V. Studies of its complexes with polyribonucleotides. J Biol Chem. 1969 Jan 25;244(2):425–429. [PubMed] [Google Scholar]
  28. Strniste G. F., Smith D. A., Hayes F. N. X-ray inactivation of the Escherichia coli deoxyribonucleic acid dependent ribonucleic acid polymerase in aqueous solution. II. Studies on initiation and fidelity of transcription. Biochemistry. 1973 Feb;12(4):603–608. doi: 10.1021/bi00728a006. [DOI] [PubMed] [Google Scholar]
  29. Sunderman F. W., Jr Carcinogenic effects of metals. Fed Proc. 1978 Jan;37(1):40–46. [PubMed] [Google Scholar]
  30. TRAUTNER T. A., SWARTZ M. N., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. X. Influence of bromouracil substitutions on replication. Proc Natl Acad Sci U S A. 1962 Mar 15;48:449–455. doi: 10.1073/pnas.48.3.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Van de Sande J. H., Loewen P. C., Khorana H. G. Studies on polynucleotides. 118. A further study of ribonucleotide incorporation into deoxyribonucleic acid chains by deoxyribonucleic acid polymerase I of Escherichia coli. J Biol Chem. 1972 Oct 10;247(19):6140–6148. [PubMed] [Google Scholar]
  32. Wandzilak T. M., Benson R. W. Yeast RNA polymerase III: a zinc metalloenzyme. Biochem Biophys Res Commun. 1976 May 23;76(2):247–252. doi: 10.1016/0006-291x(77)90718-5. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES