Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1982 Nov 25;10(22):7145–7152. doi: 10.1093/nar/10.22.7145

In vitro suppression of a nonsense mutant of Drosophila melanogaster.

E Kubli, T Schmidt, P F Martin, W Sofer
PMCID: PMC326994  PMID: 6818527

Abstract

When RNA isolated from the Drosophila melanogaster alcohol dehydrogenase (ADH) negative mutant CyOnB was translated "in vitro" in the presence of yeast opal suppressor tRNA, a wild type size ADH protein was obtained in addition to the mutant gene product. This identifies the CyOnB mutant as an opal (UGA) nonsense mutant. From the molecular weight of the mutant protein, and from the known sequence of the ADH gene (Benyajati et al., Proc.Natl.Acad.Sci. USA 78, 2717-2721, 1981), we conclude that the tryptophan codon UGG in position 234 has been changed into a UGA nonsense codon in the CyOnB mutant. Furthermore, we show that the UAA stop codon of the wild type ADH gene is resistant to suppression by a yeast ochre suppressor tRNA. This is in contrast to the high efficiency of suppression of the CyOnB UGA nonsense codon, despite an almost identical codon context.

Full text

PDF
7145

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adetugbo K., Milstein C., Secher D. S. Molecular analysis of spontaneous somatic mutants. Nature. 1977 Jan 27;265(5592):299–304. doi: 10.1038/265299a0. [DOI] [PubMed] [Google Scholar]
  2. Benyajati C., Place A. R., Powers D. A., Sofer W. Alcohol dehydrogenase gene of Drosophila melanogaster: relationship of intervening sequences to functional domains in the protein. Proc Natl Acad Sci U S A. 1981 May;78(5):2717–2721. doi: 10.1073/pnas.78.5.2717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benyajati C., Wang N., Reddy A., Weinberg E., Sofer W. Alcohol dehydrogenase in Drosophila: isolation and characterization of messenger RNA and cDNA clone. Nucleic Acids Res. 1980 Dec 11;8(23):5649–5667. doi: 10.1093/nar/8.23.5649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bienz M., Kubli E., Kohli J., de Henau S., Grosjean H. Nonsense suppression in eukaryotes: the use of the Xenopus oocyte as an in vivo assay system. Nucleic Acids Res. 1980 Nov 25;8(22):5169–5178. doi: 10.1093/nar/8.22.5169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bienz M., Kubli E., Kohli J., deHenau S., Huez G., Marbaix G., Grosjean H. Usage of the three termination codons in a single eukaryotic cell, the Xenopus laevis oocyte. Nucleic Acids Res. 1981 Aug 11;9(15):3835–3850. doi: 10.1093/nar/9.15.3835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  7. Capecchi M. R., Haar R. A., Capecchi N. E., Sveda M. M. The isolation of a suppressible nonsense mutant in mammalian cells. Cell. 1977 Oct;12(2):371–381. doi: 10.1016/0092-8674(77)90113-1. [DOI] [PubMed] [Google Scholar]
  8. Chang J. C., Kan Y. W. beta 0 thalassemia, a nonsense mutation in man. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2886–2889. doi: 10.1073/pnas.76.6.2886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chovnick A., Gelbart W., McCarron M. Organization of the Rosy locus in Drosophila melanogaster. Cell. 1977 May;11(1):1–10. doi: 10.1016/0092-8674(77)90312-9. [DOI] [PubMed] [Google Scholar]
  10. Coulondre C., Miller J. H. Genetic studies of the lac repressor. IV. Mutagenic specificity in the lacI gene of Escherichia coli. J Mol Biol. 1977 Dec 15;117(3):577–606. doi: 10.1016/0022-2836(77)90059-6. [DOI] [PubMed] [Google Scholar]
  11. Engelberg-Kulka H. UGA suppression by normal tRNA Trp in Escherichia coli: codon context effects. Nucleic Acids Res. 1981 Feb 25;9(4):983–991. doi: 10.1093/nar/9.4.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gesteland R. F., Wills N., Lewis J. B., Grodzicker T. Identification of amber and ochre mutants of the human virus Ad2+ND1. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4567–4571. doi: 10.1073/pnas.74.10.4567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnson D. H., Friedman T. B. Purine resistant mutants of Drosophila are adenine phosphoribosyltransferase deficient. Science. 1981 May 29;212(4498):1035–1036. doi: 10.1126/science.212.4498.1035. [DOI] [PubMed] [Google Scholar]
  14. Kohli J., Grosjean H. Usage of the three termination codons: compilation and analysis of the known eukaryotic and prokaryotic translation termination sequences. Mol Gen Genet. 1981;182(3):430–439. doi: 10.1007/BF00293932. [DOI] [PubMed] [Google Scholar]
  15. Kubli E. The genetics of transfer RNA in Drosophila. Adv Genet. 1982;21:123–172. doi: 10.1016/s0065-2660(08)60298-9. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Norby S. A specific nutritional requirement for pyrimidines in rudimentary mutants of Drosophila melanogaster. Hereditas. 1970;66(2):205–214. doi: 10.1111/j.1601-5223.1970.tb02346.x. [DOI] [PubMed] [Google Scholar]
  18. O'Donnell J., Gerace L., Leister F., Sofer W. Chemical selection of mutants that affect alcohol dehydrogenase in Drosophila. II. Use of 1-pentyne-3-ol. Genetics. 1975 Jan;79(1):73–83. doi: 10.1093/genetics/79.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schreier M. H., Staehelin T., Gesteland R. F., Spahr P. F. Translation of bacteriophage R17 and Qbeta RNA in a mammalian cell-free system. J Mol Biol. 1973 Apr 15;75(3):575–578. doi: 10.1016/0022-2836(73)90462-2. [DOI] [PubMed] [Google Scholar]
  20. Sofer W. H., Hatkoff M. A. Chemical selection of alcohol dehydrogenase negative mutants in drosophila. Genetics. 1972 Nov;72(3):545–549. doi: 10.1093/genetics/72.3.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Summers W. P., Wagner M., Summers W. C. Possible peptide chain termination mutants in thymide kinase gene of a mammalian virus, herpes simplex virus. Proc Natl Acad Sci U S A. 1975 Oct;72(10):4081–4084. doi: 10.1073/pnas.72.10.4081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Thatcher D. R., Sawyer L. Secondary-structure prediction from the sequence of Drosophila melanogaster (fruitfly) alcohol dehydrogenase. Biochem J. 1980 Jun 1;187(3):884–886. doi: 10.1042/bj1870884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Trecartin R. F., Liebhaber S. A., Chang J. C., Lee K. Y., Kan Y. W., Furbetta M., Angius A., Cao A. beta zero thalassemia in Sardinia is caused by a nonsense mutation. J Clin Invest. 1981 Oct;68(4):1012–1017. doi: 10.1172/JCI110323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vigue C., Sofer W. Chemical selection of mutants that affect ADH activity in Drosophila. III. Effects of ethanol. Biochem Genet. 1976 Feb;14(1-2):127–135. doi: 10.1007/BF00484879. [DOI] [PubMed] [Google Scholar]
  25. Waterston R. H. A second informational suppressor, SUP-7 X, in Caenorhabditis elegans. Genetics. 1981 Feb;97(2):307–325. doi: 10.1093/genetics/97.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Waterston R. H., Brenner S. A suppressor mutation in the nematode acting on specific alleles of many genes. Nature. 1978 Oct 26;275(5682):715–719. doi: 10.1038/275715a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES