Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1981 Feb 11;9(3):663–681. doi: 10.1093/nar/9.3.663

Structural investigation of nuclear RNP particles containing pre-mRNA by different fluorescence techniques.

O F Borissova, A A Krichevskaya, O P Samarina
PMCID: PMC327229  PMID: 7220348

Abstract

Ethidium bromide (EB) adsorption isotherms on 30S nuclear RNP particles isolated from liver nuclei has revealed 6% of double-stranded regions in pre-mRNA (dsRNA). It has been established by measurements of the EB fluorescence polarization that the bulk of dsRNA regions in RNP is rigidly attached to RNP. They are longer than 45 degree A. The increase of NaCl concentration from 0.1 up to 0.4 M causes a significant loosening of dsRNA-protein bonds. As a result the dsRNA segments become more flexible. Measurements of energy transfer from fluorescamine (covalently bound to the protein) to EB (adsorbed on dsRNA) have yielded information about dsRNA location. The fact that absorbtion of exciting light by fluorescamine causes pronounced increase of EB fluorescence is consistent with the idea that helical regions of RNA are located outside the RNP particles.

Full text

PDF
663

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bittman R. Studies of the binding of ethidium bromide to transfer ribonucleic acid: absorption, fluorescence, ultracentrifugation and kinetic investigations. J Mol Biol. 1969 Dec 14;46(2):251–268. doi: 10.1016/0022-2836(69)90420-3. [DOI] [PubMed] [Google Scholar]
  2. Borisova O. F., Afanasenko G. A., Ryskov A. P., Tsaregorodtsev V. I. Izuchenie vtorichnoi struktury iadernykh predshestvennikov informatsionnoi RNK (pro-mRNK). Mol Biol (Mosk) 1976 Sep-Oct;10(5):1094–1102. [PubMed] [Google Scholar]
  3. Borisova O. F., Molnar Ia, Samarina O. P. Iadernye ribonukleoproteidy, soderzhashchie informatsionnuiu RNK. 12. Izuchenie vtorichnoi struktury pro-mRNK v sostave iadernykh RNP-chastits fluorestsentnymi metodami. Mol Biol (Mosk) 1977 Mar-Apr;11(2):457–465. [PubMed] [Google Scholar]
  4. Böhlen P., Stein S., Dairman W., Udenfriend S. Fluorometric assay of proteins in the nanogram range. Arch Biochem Biophys. 1973 Mar;155(1):213–220. doi: 10.1016/s0003-9861(73)80023-2. [DOI] [PubMed] [Google Scholar]
  5. Calvet J. P., Pederson T. Secondary structure of heterogeneous nuclear RNA: two classes of double-stranded RNA in native ribonucleoprotein. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3705–3709. doi: 10.1073/pnas.74.9.3705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crothers D. M. Calculation of binding isotherms for heterogenous polymers. Biopolymers. 1968 Apr;6(4):575–584. doi: 10.1002/bip.1968.360060411. [DOI] [PubMed] [Google Scholar]
  7. De Bernardo S., Weigele M., Toome V., Manhart K., Leimgruber W., Böhlen P., Stein S., Udenfriend S. Studies on the reaction of fluorescamine with primary amines. Arch Biochem Biophys. 1974 Jul;163(1):390–399. doi: 10.1016/0003-9861(74)90490-1. [DOI] [PubMed] [Google Scholar]
  8. Douthart R. J., Burnett J. P., Beasley F. W., Frank B. H. Binding of ethidium bromide to double-stranded ribonucleic acid. Biochemistry. 1973 Jan 16;12(2):214–220. doi: 10.1021/bi00726a006. [DOI] [PubMed] [Google Scholar]
  9. Garesse R., Castell J. V., Vallejo C. G., Marco R. A fluorescamine-based sensitive method for the assay of proteinases, capable of detecting the initial cleavage steps of a protein. Eur J Biochem. 1979 Sep;99(2):253–259. doi: 10.1111/j.1432-1033.1979.tb13252.x. [DOI] [PubMed] [Google Scholar]
  10. Genest D., Wahl P. Fluorescence anisotropy decay due to rotational brownian motion of ethidium intercalated in double strand DNA. Biochim Biophys Acta. 1978 Dec 21;521(2):502–509. doi: 10.1016/0005-2787(78)90292-7. [DOI] [PubMed] [Google Scholar]
  11. Georgiev G. P., Samarina O. P. D-RNA containing ribonucleoprotein particles. Adv Cell Biol. 1971;2:47–110. doi: 10.1007/978-1-4615-9588-5_2. [DOI] [PubMed] [Google Scholar]
  12. Holmes D. S., Bonner J. Preparation, molecular weight, base composition, and secondary structure of giant nuclear ribonucleic acid. Biochemistry. 1973 Jun 5;12(12):2330–2338. doi: 10.1021/bi00736a023. [DOI] [PubMed] [Google Scholar]
  13. Jain S. C., Tsai C. C., Sobell H. M. Visualization of drug-nucleic acid interactions at atomic resolution. II. Structure of an ethidium/dinucleoside monophosphate crystalline complex, ethidium:5-iodocytidylyl (3'-5') guanosine. J Mol Biol. 1977 Aug 15;114(3):317–331. doi: 10.1016/0022-2836(77)90253-4. [DOI] [PubMed] [Google Scholar]
  14. Kastrup R. V., Young M. A., Krugh T. R. Ethidium bromide complexes with self-complementary deoxytetranucleotides. Demonstration and discussion of sequence preferences in the intercalative binding of ethidium bromide. Biochemistry. 1978 Nov 14;17(23):4855–4865. doi: 10.1021/bi00616a002. [DOI] [PubMed] [Google Scholar]
  15. Krugh T. R., Wittlin F. N., Cramer S. P. Ethidium bromide-dinucleotide complexes. Evidence for intercalation and sequence preferences in binding to double-stranded nucleic acids. Biopolymers. 1975 Jan;14(1):197–210. doi: 10.1002/bip.1975.360140114. [DOI] [PubMed] [Google Scholar]
  16. Le Pecq J. B. Use of ethidium bromide for separation and determination of nucleic acids of various conformational forms and measurement of their associated enzymes. Methods Biochem Anal. 1971;20:41–86. doi: 10.1002/9780470110393.ch2. [DOI] [PubMed] [Google Scholar]
  17. LePecq J. B., Paoletti C. A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. J Mol Biol. 1967 Jul 14;27(1):87–106. doi: 10.1016/0022-2836(67)90353-1. [DOI] [PubMed] [Google Scholar]
  18. Matsumoto S., Hammes G. G. Fluorescence energy transfer between ligand binding sites on aspartate transcarbamylase. Biochemistry. 1975 Jan 28;14(2):214–224. doi: 10.1021/bi00673a004. [DOI] [PubMed] [Google Scholar]
  19. Molnár J., Besson J., Samarina O. P. Secondary structure of pre-mRNA in nuclear ribonucleoprotein particles. Mol Biol Rep. 1975 Mar;2(1):11–17. doi: 10.1007/BF00357292. [DOI] [PubMed] [Google Scholar]
  20. Northemann W., Scheurlen M., Gross V., Heinrich P. C. Circular dichroism of ribonucleoprotein complexes from rat liver nuclei. Biochem Biophys Res Commun. 1977 Jun 20;76(4):1130–1137. doi: 10.1016/0006-291x(77)90973-1. [DOI] [PubMed] [Google Scholar]
  21. Northemann W., Seifert H., Heinrich P. C. The effect of sodium chloride on the structure of ribonucleoprotein particles from rat liver nuclei. Hoppe Seylers Z Physiol Chem. 1979 Jul;360(7):877–888. doi: 10.1515/bchm2.1979.360.2.877. [DOI] [PubMed] [Google Scholar]
  22. Paoletti J., Le Pecq J. B. Resonance energy transfer between ethidium bromide molecules bound to nucleic acids. Does intercalation wind or unwind the DNA helix? J Mol Biol. 1971 Jul 14;59(1):43–62. doi: 10.1016/0022-2836(71)90412-8. [DOI] [PubMed] [Google Scholar]
  23. Patel D. J., Canuel L. L. Ethidium bromide-(dC-dG-dC-dG)2 complex in solution: intercalation and sequence specificity of drug binding at the tetranucleotide duplex level. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3343–3347. doi: 10.1073/pnas.73.10.3343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pearlstein R. M. Donor fluorescence as a probe of energy transfer. Photochem Photobiol. 1968 Nov;8(5):341–347. doi: 10.1111/j.1751-1097.1968.tb05879.x. [DOI] [PubMed] [Google Scholar]
  25. Prosvirnin V. V., Ruzidic S., Samarina O. P. Cross-linked informofers. Nucleic Acids Res. 1979 Nov 24;7(6):1649–1661. doi: 10.1093/nar/7.6.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reinhardt C. G., Krugh T. R. A comparative study of ethidium bromide complexes with dinucleotides and DNA: direct evidence for intercalation and nucleic acid sequence preferences. Biochemistry. 1978 Nov 14;17(23):4845–4854. doi: 10.1021/bi00616a001. [DOI] [PubMed] [Google Scholar]
  27. Samarina O. P., Lukanidin E. M., Georgiev G. P. Ribonucleoprotein particles containing mRNA and pre-mRNA. Acta Endocrinol Suppl (Copenh) 1973;180:130–167. doi: 10.1530/acta.0.074s130. [DOI] [PubMed] [Google Scholar]
  28. Samarina O. P., Lukanidin E. M., Molnar J., Georgiev G. P. Structural organization of nuclear complexes containing DNA-like RNA. J Mol Biol. 1968 Apr 14;33(1):251–263. doi: 10.1016/0022-2836(68)90292-1. [DOI] [PubMed] [Google Scholar]
  29. Sarasin A. Particules ribonucleoproteiques 40 s des noyaux de foie de rat. Proprietes des proteines de ces particules. FEBS Lett. 1969 Aug;4(4):327–330. doi: 10.1016/0014-5793(69)80267-x. [DOI] [PubMed] [Google Scholar]
  30. Stein S., Böhlen P., Udenfriend S. Studies on the kinetics of reaction and hydrolysis of fluorescamine. Arch Biochem Biophys. 1974 Jul;163(1):400–403. doi: 10.1016/0003-9861(74)90491-3. [DOI] [PubMed] [Google Scholar]
  31. Surovaya A. N., Borissova O. F. Conformational peculiarities of tRNAMetf from E. coli as revealed by fluorescent methods. Mol Biol Rep. 1976 Jul;2(6):487–495. doi: 10.1007/BF00356938. [DOI] [PubMed] [Google Scholar]
  32. Surovaya A., Borisova O., Jilyaeva T., Scheinker V., Kisselev L. Polarized fluorescence of acridine orange-transfer RNA complexes. FEBS Lett. 1970 Jun 8;8(4):201–204. doi: 10.1016/0014-5793(70)80263-0. [DOI] [PubMed] [Google Scholar]
  33. Surovaya A., Trubitsyn S. Binding isotherms of tRNA-acriflavine complexes. FEBS Lett. 1972 Sep 15;25(2):349–352. doi: 10.1016/0014-5793(72)80522-2. [DOI] [PubMed] [Google Scholar]
  34. Wahl P., Genest D., Tichadou J. L. Energy migration in the poly(rA--rU)-ethidium complex. Determination of the unwinding angle of the polyribonucleic helix. Biophys Chem. 1977 Apr;6(3):311–319. doi: 10.1016/0301-4622(77)85012-6. [DOI] [PubMed] [Google Scholar]
  35. Wahl P., Paoletti J., Le Pecq J. B. Decay of fluorescence emission anisotropy of the ethidium bromide-DNA complex. Evidence for an internal motion in DNA. Proc Natl Acad Sci U S A. 1970 Feb;65(2):417–421. doi: 10.1073/pnas.65.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES