Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1980 Jan 11;8(1):43–56. doi: 10.1093/nar/8.1.43

A spite specific endonuclease from thermus thermophilus 111, Tth111I.

T Shinomiya, S Sato
PMCID: PMC327241  PMID: 6243779

Abstract

A site specific endonuclease with novel specificity has been isolated from Thermus thermophilus strain 111 and named Tth111I. Tth111I cleaves lambda DNA into three fragments of 23.5, 25.7 and 50.8% of the total length, and ColE1 DNA into two fragments of nearly equal length. The sequences around Tth111I cleavage sites of ColE1 and lambda DNA were determined by the Maxam and Gilbert method and the two dimensional mapping method. The results suggest that Tth111I recognizes the DNA sequence (formula: see text) and cleaves the site as indicated by the arrows. Assuming that the first T.A pair in the sequence can be replaced for any base pair, the Tth111I recognition sequence has the symmetry with the two-fold axis as most type II restriction endonucleases do.

Full text

PDF
43

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allet B., Bukhari A. I. Analysis of bacteriophage mu and lambda-mu hybrid DNAs by specific endonucleases. J Mol Biol. 1975 Mar 15;92(4):529–540. doi: 10.1016/0022-2836(75)90307-1. [DOI] [PubMed] [Google Scholar]
  2. Allet B., Katagiri K. J., Gesteland R. F. Characterization of polypeptides made in vitro from bacteriophage lambda DNA. J Mol Biol. 1973 Aug 25;78(4):589–600. doi: 10.1016/0022-2836(73)90281-7. [DOI] [PubMed] [Google Scholar]
  3. Bernardi A. A fast method of analysis of the 5' terminal nucleotides of deoxyribooligonucleotides. Anal Biochem. 1974 Jun;59(2):501–507. doi: 10.1016/0003-2697(74)90303-0. [DOI] [PubMed] [Google Scholar]
  4. Bernardi G. Chromatography of nucleic acids on hydroxyapatite. Nature. 1965 May 22;206(4986):779–783. doi: 10.1038/206779a0. [DOI] [PubMed] [Google Scholar]
  5. Bickle T. A., Pirrotta V., Imber R. A simple, general procedure for purifying restriction endonucleases. Nucleic Acids Res. 1977 Aug;4(8):2561–2572. doi: 10.1093/nar/4.8.2561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brownlee G. G., Sanger F. Chromatography of 32P-labelled oligonucleotides on thin layers of DEAE-cellulose. Eur J Biochem. 1969 Dec;11(2):395–399. doi: 10.1111/j.1432-1033.1969.tb00786.x. [DOI] [PubMed] [Google Scholar]
  7. Chater K. F. A site-specific endodeoxyribonuclease from Streptomyces albus CMI 52766 sharing site-specificity with Providencia stuartii endonuclease PstI. Nucleic Acids Res. 1977 Jun;4(6):1989–1998. doi: 10.1093/nar/4.6.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fangman W. L. Separation of very large DNA molecules by gel electrophoresis. Nucleic Acids Res. 1978 Mar;5(3):653–665. doi: 10.1093/nar/5.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fujita S. C., Oshima T., Imahori K. Purification and properties of D-glyceraldehyde-3-phosphate dehydrogenase from an extreme thermophile, Thermus thermophilus strain HB 8. Eur J Biochem. 1976 Apr 15;64(1):57–68. doi: 10.1111/j.1432-1033.1976.tb10274.x. [DOI] [PubMed] [Google Scholar]
  10. Hon-Nami K., Oshima T. Purification and some properties of cytochrome c-552 from an extreme thermophile, Thermus thermophilus HB8. J Biochem. 1977 Sep;82(3):769–776. doi: 10.1093/oxfordjournals.jbchem.a131753. [DOI] [PubMed] [Google Scholar]
  11. Iverius P. H. Coupling of glycosaminoglycans to agarose beads (sepharose 4B). Biochem J. 1971 Oct;124(4):677–683. doi: 10.1042/bj1240677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jay E., Bambara R., Padmanabhan R., Wu R. DNA sequence analysis: a general, simple and rapid method for sequencing large oligodeoxyribonucleotide fragments by mapping. Nucleic Acids Res. 1974 Mar;1(3):331–353. doi: 10.1093/nar/1.3.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nojima H., Ikai A., Oshima T., Noda H. Reversible thermal unfolding of thermostable phosphoglycerate kinase. Thermostability associated with mean zero enthalpy change. J Mol Biol. 1977 Nov 5;116(3):429–442. doi: 10.1016/0022-2836(77)90078-x. [DOI] [PubMed] [Google Scholar]
  15. Oka A., Takanami M. Cleavage map of colicin E1 plasmid. Nature. 1976 Nov 11;264(5582):193–196. doi: 10.1038/264193a0. [DOI] [PubMed] [Google Scholar]
  16. Peacock A. C., Dingman C. W. Molecular weight estimation and separation of ribonucleic acid by electrophoresis in agarose-acrylamide composite gels. Biochemistry. 1968 Feb;7(2):668–674. doi: 10.1021/bi00842a023. [DOI] [PubMed] [Google Scholar]
  17. Reznikoff W. S., Winter R. B., Hurley C. K. The location of the repressor binding sites in the lac operon. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2314–2318. doi: 10.1073/pnas.71.6.2314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Roberts R. J. Restriction and modification enzymes and their recognition sequences. Gene. 1978 Nov;4(3):183–194. doi: 10.1016/0378-1119(78)90017-3. [DOI] [PubMed] [Google Scholar]
  19. Roy P. H., Smith H. O. DNA methylases of Hemophilus influenzae Rd. II. Partial recognition site base sequences. J Mol Biol. 1973 Dec 25;81(4):445–459. doi: 10.1016/0022-2836(73)90516-0. [DOI] [PubMed] [Google Scholar]
  20. Sakaki Y., Oshima T. Isolation and characterization of a bacteriophage infectious to an extreme thermophile, Thermus thermophilus HB8. J Virol. 1975 Jun;15(6):1449–1453. doi: 10.1128/jvi.15.6.1449-1453.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sanger F., Air G. M., Barrell B. G., Brown N. L., Coulson A. R., Fiddes C. A., Hutchison C. A., Slocombe P. M., Smith M. Nucleotide sequence of bacteriophage phi X174 DNA. Nature. 1977 Feb 24;265(5596):687–695. doi: 10.1038/265687a0. [DOI] [PubMed] [Google Scholar]
  22. Sharp P. A., Sugden B., Sambrook J. Detection of two restriction endonuclease activities in Haemophilus parainfluenzae using analytical agarose--ethidium bromide electrophoresis. Biochemistry. 1973 Jul 31;12(16):3055–3063. doi: 10.1021/bi00740a018. [DOI] [PubMed] [Google Scholar]
  23. Tanaka T., Weisblum B. Construction of a colicin E1-R factor composite plasmid in vitro: means for amplification of deoxyribonucleic acid. J Bacteriol. 1975 Jan;121(1):354–362. doi: 10.1128/jb.121.1.354-362.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tu C. D., Roychoudhury R., Wu R. Nucleotide recognition sequence at the cleavage site of Haemophilus aegyptius II (Hae II) restriction endonuclease. Biochem Biophys Res Commun. 1976 Sep 7;72(1):355–362. doi: 10.1016/0006-291x(76)91001-9. [DOI] [PubMed] [Google Scholar]
  25. Tu C. P., Jay E., Bahl C. P., Wu R. A reliable mapping method for sequence determination of oligodeoxyribonucleotides by mobility shift analysis. Anal Biochem. 1976 Jul;74(1):73–93. doi: 10.1016/0003-2697(76)90311-0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES