Abstract
Fractionated polyuridylic acid with an average chain length of 55 nucleotides forms binary complexes with 30S subunits with a stoichiometry of I:I. These complexes are heterogeneous in stability. The more stable one is characterized by an association constant K2 - 5.5xI09 M-I, and the less stable-by KI = I06xM-I, at 20 mM Mg2+, 200 mM NH4(+) and 0 degrees C. The main reason for this heterogeneity is the presence or absence of the ribosomal protein SI in the presence or absence of the ribosomal protein SI in the subunits. Decrease of Mg2+ concentration down to 5 mM hardly changes the K2 values but reduction of the NH4(+) concentration to 50 mM results in a 25-fold increase of K2. Association constants K2 for the stable complex, i.e. in the presence of SI protein, were measured at different temperatures (0 - 30 degrees C) and the thermodynamic parameters of binding (delta H degrees, delta S degrees, delta G degrees) were determined. Analogous experiments were made with 70S ribosomes. K2 values as well as delta H degrees, delta S degrees, delta G degrees appeared the same both for 30S and 70S ribosomes in all conditions examined. This is strong evidence that the 50S subunits do not contribute to the interaction of poly(U) with the complete 70S ribosomes.
Full text
PDF


















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Castles J. J. The effect of chain length on the binding of polyuridylic acid to ribosomes. Arch Biochem Biophys. 1969 Oct;134(1):53–58. doi: 10.1016/0003-9861(69)90250-1. [DOI] [PubMed] [Google Scholar]
- Fanning T. G., Cantrell M., Shih C. Y., Craven G. R. Evidence that proteins S1, S11 and S21 directly participates in the binding of transfer RNA to the 30S ribosome. Nucleic Acids Res. 1978 Mar;5(3):933–950. doi: 10.1093/nar/5.3.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fiser I., Scheit K. H., Stöffler G., Kuechler E. Proteins at the mRNA binding site of the Escherichia coli ribosome. FEBS Lett. 1975 Aug 15;56(2):226–229. doi: 10.1016/0014-5793(75)81097-0. [DOI] [PubMed] [Google Scholar]
- Fiser I., Scheit K. H., Stöffler G., Kuechler E. Proteins at the mRNA binding site of the Escherichia coli ribosome. FEBS Lett. 1975 Aug 15;56(2):226–229. doi: 10.1016/0014-5793(75)81097-0. [DOI] [PubMed] [Google Scholar]
- Glukhova M. A., Belitsina N. V., Spirin A. S. A study of codon-dependent binding of aminoacyl-tRNA with the ribosomal 30-S subparticle of Escherichia coli. Determination of the active-particle fraction and binding constants in different media. Eur J Biochem. 1975 Mar 3;52(1):197–202. doi: 10.1111/j.1432-1033.1975.tb03987.x. [DOI] [PubMed] [Google Scholar]
- Kirillov S. V., Makhno V. I., Peshin N. N., Semenkov Iu P. Priroda geterogennosti 30S ribosomnykh subchastits in vitro. I. Vliianie bol'shikh tsentrobezhnykh polei pri vydelenii 30S subchastits na ikh sposobnost' k kodonzavisimomu sviazyvaniiu tRNK. Mol Biol (Mosk) 1978 May-Jun;12(3):602–611. [PubMed] [Google Scholar]
- Kirillov S. V., Makhno V. I., Semenkov Y. P. The mechanism of codon-anticodon interaction in ribosomes. Quantitative study of codon-dependent binding of tRNA to the 30-S ribosomal subunits of Escherichia coli. Eur J Biochem. 1978 Aug 15;89(1):297–304. doi: 10.1111/j.1432-1033.1978.tb20927.x. [DOI] [PubMed] [Google Scholar]
- Laughrea M., Moore P. B. Physical properties of ribosomal protein S1 and its interaction with the 30 S ribosomal subunit of Escherichia coli. J Mol Biol. 1977 May 25;112(3):399–421. doi: 10.1016/s0022-2836(77)80189-7. [DOI] [PubMed] [Google Scholar]
- Linde R., Quoc Khanh N., Lipecky R., Gassen H. G. On the function of the ribosomal protein S1 in the elongation cycle of bacterial protein synthesis. Eur J Biochem. 1979 Feb 1;93(3):565–572. doi: 10.1111/j.1432-1033.1979.tb12856.x. [DOI] [PubMed] [Google Scholar]
- Lipecky R., Kohlschein J., Gassen H. G. Complex formation between ribosomal protein S1, oligo-and polynucleotides: chain length dependence and base specificity. Nucleic Acids Res. 1977 Oct;4(10):3627–3642. doi: 10.1093/nar/4.10.3627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McAllister H. C., Schweet R. S. Involvement of sulfhydryl groups in the binding of tRNA to reticulocyte ribosomes. J Mol Biol. 1968 Jun 28;34(3):519–525. doi: 10.1016/0022-2836(68)90177-0. [DOI] [PubMed] [Google Scholar]
- Moore P. B. Polynucleotide attachment to ribosomes. J Mol Biol. 1966 Jun;18(1):8–20. doi: 10.1016/s0022-2836(66)80072-4. [DOI] [PubMed] [Google Scholar]
- Moore P. B. Protein synthesis catalyzed by thiol blocked ribosome preparations. J Mol Biol. 1973 Oct 5;79(4):615–632. doi: 10.1016/0022-2836(73)90067-3. [DOI] [PubMed] [Google Scholar]
- Pestka S., Goorha R., Rosenfeld H., Neurath C., Hintikka H. Studies on transfer ribonucleic acid-ribosome complexes. XX. Peptidyl-puromycin synthesis on mammalian polyribosomes. J Biol Chem. 1972 Jul 10;247(13):4258–4263. [PubMed] [Google Scholar]
- Schenkman M. L., Ward D. C., Moore P. B. Covalent attachment of a messenger RNA to the Escherichia coli ribosome. Biochim Biophys Acta. 1974 Jul 24;353(4):503–508. doi: 10.1016/0005-2787(74)90056-2. [DOI] [PubMed] [Google Scholar]
- Schenkman M. L., Ward D. C., Moore P. B. Covalent attachment of a messenger RNA to the Escherichia coli ribosome. Biochim Biophys Acta. 1974 Jul 24;353(4):503–508. doi: 10.1016/0005-2787(74)90056-2. [DOI] [PubMed] [Google Scholar]
- TAKANAMI M., OKAMOTO T. INTERACTION OF RIBOSOMES AND SYNTHETIC POLYRIBONUCLEOTIDES. J Mol Biol. 1963 Oct;7:323–333. doi: 10.1016/s0022-2836(63)80027-3. [DOI] [PubMed] [Google Scholar]
- Voynow P., Kurland C. G. Stoichiometry of the 30S ribosomal proteins of Escherichia coli. Biochemistry. 1971 Feb 2;10(3):517–524. doi: 10.1021/bi00779a026. [DOI] [PubMed] [Google Scholar]
- Weber H. J. Stoichiometric measurements of 30S and 50S ribosomal proteins from Escherichia coli. Mol Gen Genet. 1972;119(3):233–248. doi: 10.1007/BF00333861. [DOI] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]