Abstract
Fourier transform 13C NMR spectra of E. coli tRNA enriched on 13C in either position 2 of adenine (60 atom % 13C) or in position 2 of uracil (82%) and cytosine (63%) were taken at 25.16 MHz over the temperature range 10 degrees - 76 degrees. For C2 of adenine the peak as initially 5 ppm wide, but narrowed to 0.5 ppm as the molecule unfolded. C2 of uracil displayed behavior similar to that of adenine while the cytosine peak, initially relatively narrow at low temperature, sharpened less dramatically. Comparison of spectra at 26.16 MHz and 67.9 MHz showed that the peak widths for folded tRNA were determined largely by chemical shift non-equivalence. T2 T2 measurements suggested that intrinsic line widths of most cytosine C2 peaks were 4 Hz and 2-3 Hz for uracil. Adenine C2 with a directly bonded proton had resonances of about 40 Hz line width. T1 values were measured for C2 of adenine and the ribose carbons of tRNA. Consideration of dipolar relaxation and chemical shift anisotrophy led to a calculated rotational correlation time of 1.6 +/- 0.4 x 10(-8) sec for the adenines and 1.3 +/- 0.3 x 10(-8) sec for the ribose carbons.
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agris P. F., Fujiwara F. G., Schmidt C. F., Loeppky R. N. Utilization of an Escherichia coli mutant for carbon-13 enrichment of tRNA for NMR studies. Nucleic Acids Res. 1975 Sep;2(9):1503–1512. doi: 10.1093/nar/2.9.1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Agris P. F., Söll D., Seno T. Biological function of 2-thiouridine in Escherichia coli glutamic acid transfer ribonucleic acid. Biochemistry. 1973 Oct 23;12(22):4331–4337. doi: 10.1021/bi00746a005. [DOI] [PubMed] [Google Scholar]
- Cole P. E., Yang S. K., Crothers D. M. Conformational changes of transfer ribonucleic acid. Equilibrium phase diagrams. Biochemistry. 1972 Nov 7;11(23):4358–4368. doi: 10.1021/bi00773a024. [DOI] [PubMed] [Google Scholar]
- Davis G. E., Gehrke C. W., Kuo K. C., Agris P. F. Major and modified nucleosides in tRNA hydrolysates by high-performance liquid chromatography. J Chromatogr. 1979 May 21;173(2):281–298. doi: 10.1016/s0021-9673(00)92297-0. [DOI] [PubMed] [Google Scholar]
- Egan W., Shindo H., Cohen J. S. Carbon-13 nuclear magnetic resonance studies of proteins. Annu Rev Biophys Bioeng. 1977;6:383–417. doi: 10.1146/annurev.bb.06.060177.002123. [DOI] [PubMed] [Google Scholar]
- Kastrup R. V., Schmidt P. G. 1H nuclear magnetic resonance of modified bases of valine transfer ribonucleic acid (Escherichia coli). A direct monitor of sequential thermal unfolding. Biochemistry. 1975 Aug 12;14(16):3612–3618. doi: 10.1021/bi00687a015. [DOI] [PubMed] [Google Scholar]
- Komoroski R. A., Allerhand A. Natural-abundance carbon-13 Fourier-transform nuclear magnetic resonance spectra and spin lattice relaxation times of unfractionated yeast transfer-FNA. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1804–1808. doi: 10.1073/pnas.69.7.1804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Komoroski R. A., Allerhand A. Observation of resonances from some minor bases in the natural-abundance carbon-13 nuclear magnetic resonance spectrum of unfractionated yeast transfer ribonucleic acid. Evidence for fast internal motion of the dihydrouracil rings. Biochemistry. 1974 Jan 15;13(2):369–372. doi: 10.1021/bi00699a023. [DOI] [PubMed] [Google Scholar]
- Norton R. S., Clouse A. O., Addleman R., Allerhand A. Studies of proteins in solution by natural-abundance carbon-13 nuclear magnetic resonance. Spectral resolution and relaxation behavior at high magnetic field strengths. J Am Chem Soc. 1977 Jan 5;99(1):79–83. doi: 10.1021/ja00443a016. [DOI] [PubMed] [Google Scholar]
- Sussman J. L., Holbrook S. R., Warrant R. W., Church G. M., Kim S. H. Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. J Mol Biol. 1978 Aug 25;123(4):607–630. doi: 10.1016/0022-2836(78)90209-7. [DOI] [PubMed] [Google Scholar]
- Tao T., Nelson J. H., Cantor C. R. Conformational studies on transfer ribonucleic acid. Fluorescence lifetime and nanosecond depolarization measurements on bound ethidium bromidee. Biochemistry. 1970 Sep 1;9(18):3514–3524. doi: 10.1021/bi00820a004. [DOI] [PubMed] [Google Scholar]
- Tompson J. G., Hayashi F., Paukstelis J. V., Loeppky R. N., Agris P. F. Complete nuclear magnetic resonance signal assignments and initial structural studies of [13C]methyl-enriched transfer ribonucleic acid. Biochemistry. 1979 May 15;18(10):2079–2085. doi: 10.1021/bi00577a037. [DOI] [PubMed] [Google Scholar]
- Wilbur D. J., Norton R. S., Clouse A. O., Addleman R., Allerhand A. Determination of rotational correlation times of proteins in solution from carbon-13 spin-lattice relaxation measurements. Effect of magnetic field strength and anisotropic rotation. J Am Chem Soc. 1976 Dec 8;98(25):8250–8254. doi: 10.1021/ja00441a059. [DOI] [PubMed] [Google Scholar]