Abstract
Through the use of a variety of post-labeling techniques, the nucleotide sequence of a major species of leucine tRNA from bovine liver was determined to be pG-G-U-A-G-C-G-U-G-m-G-C-ac-C-G-A-G-C-G-G-D-C-psi-A-A-G-G-C-m-G-C-U-G-G-A-psim- U-I-A-G-m-G-C-psi-C-C-A-G-U-C-psi-C-psi-U-C-G-G-G-G-G-m-C-G-U-G-G-G-T-psi-C-G-m -A-A-U-C-C-C-A-C-C-G-C-U-G-C-C-A-C-C-AOH. A comparison of known sequences of leucine tRNAs shows a consistent set of features which clearly distinguish prokaryotic and eukaryotic leucine tRNAs from each other.
Full text
PDF![805](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffeb/327312/3ab3a83116d8/nar00421-0107.png)
![806](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffeb/327312/a32d1908597f/nar00421-0108.png)
![807](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffeb/327312/2ad555e628de/nar00421-0109.png)
![808](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffeb/327312/692c038f0e31/nar00421-0110.png)
![809](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffeb/327312/2aaa01e4e642/nar00421-0111.png)
![810](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffeb/327312/9946e32b30e6/nar00421-0112.png)
![811](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffeb/327312/ccb405abd56a/nar00421-0113.png)
![812](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffeb/327312/4dbe79cad97b/nar00421-0114.png)
![813](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffeb/327312/0be568fe8883/nar00421-0115.png)
![814](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffeb/327312/7623c3be5be7/nar00421-0116.png)
![815](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffeb/327312/ea068482ae63/nar00421-0117.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bruce A. G., Uhlenbeck O. C. Reactions at the termini of tRNA with T4 RNA ligase. Nucleic Acids Res. 1978 Oct;5(10):3665–3677. doi: 10.1093/nar/5.10.3665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donis-Keller H., Maxam A. M., Gilbert W. Mapping adenines, guanines, and pyrimidines in RNA. Nucleic Acids Res. 1977 Aug;4(8):2527–2538. doi: 10.1093/nar/4.8.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- England T. E., Uhlenbeck O. C. 3'-terminal labelling of RNA with T4 RNA ligase. Nature. 1978 Oct 12;275(5680):560–561. doi: 10.1038/275560a0. [DOI] [PubMed] [Google Scholar]
- Gupta R. C., Randerath K. Rapid print-readout technique for sequencing of RNA's containing modified nucleotides. Nucleic Acids Res. 1979 Aug 10;6(11):3443–3458. doi: 10.1093/nar/6.11.3443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krupp G., Gross H. J. Rapid RNA sequencing: nucleases from Staphylococcus aureus and Neurospora crassa discriminate between uridine and cytidine. Nucleic Acids Res. 1979 Aug 10;6(11):3481–3490. doi: 10.1093/nar/6.11.3481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magrath D. I., Shaw D. C. The occurrence and source of beta-alanine in alkaline hydrolysates of sRNA: a sensitive method for the detection and assay of 5,6-dihydrouracil residues in RNA. Biochem Biophys Res Commun. 1967 Jan 10;26(1):32–37. doi: 10.1016/0006-291x(67)90248-3. [DOI] [PubMed] [Google Scholar]
- Pirtle R. M., Pirtle I. L., Inouye M. Homologous nucleotide sequences between prokaryotic and eukaryotic mRNAs: the 5'-end sequence of the mRNA of the lipoprotein of the Escherichia coli outer membrane. Proc Natl Acad Sci U S A. 1978 May;75(5):2190–2194. doi: 10.1073/pnas.75.5.2190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reszelbach R., Greenberg R., Pirtle R., Prasad R., Marcu K., Dudock B. Isolation and comparison of ribothymidine-lacking tRNAs of fetal, newborn and adult bovine tissues. Biochim Biophys Acta. 1977 Mar 18;475(2):383–392. doi: 10.1016/0005-2787(77)90027-2. [DOI] [PubMed] [Google Scholar]
- Rich A., RajBhandary U. L. Transfer RNA: molecular structure, sequence, and properties. Annu Rev Biochem. 1976;45:805–860. doi: 10.1146/annurev.bi.45.070176.004105. [DOI] [PubMed] [Google Scholar]
- Roe B. A. Studies on human tRNA. I. The rapid, large scale isolation and partial fractionation of placenta and liver tRNA. Nucleic Acids Res. 1975 Jan;2(1):21–42. doi: 10.1093/nar/2.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Coulson A. R. The use of thin acrylamide gels for DNA sequencing. FEBS Lett. 1978 Mar 1;87(1):107–110. doi: 10.1016/0014-5793(78)80145-8. [DOI] [PubMed] [Google Scholar]
- Sanger F., Donelson J. E., Coulson A. R., Kössel H., Fischer D. Use of DNA polymerase I primed by a synthetic oligonucleotide to determine a nucleotide sequence in phage fl DNA. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1209–1213. doi: 10.1073/pnas.70.4.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silberklang M., Gillum A. M., RajBhandary U. L. The use of nuclease P1 in sequence analysis of end group labeled RNA. Nucleic Acids Res. 1977 Dec;4(12):4091–4108. doi: 10.1093/nar/4.12.4091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silberklang M., Gillum A. M., RajBhandary U. L. Use of in vitro 32P labeling in the sequence analysis of nonradioactive tRNAs. Methods Enzymol. 1979;59:58–109. doi: 10.1016/0076-6879(79)59072-7. [DOI] [PubMed] [Google Scholar]
- Simoncsits A., Brownlee G. G., Brown R. S., Rubin J. R., Guilley H. New rapid gel sequencing method for RNA. Nature. 1977 Oct 27;269(5631):833–836. doi: 10.1038/269833a0. [DOI] [PubMed] [Google Scholar]
- Stanley J., Vassilenko S. A different approach to RNA sequencing. Nature. 1978 Jul 6;274(5666):87–89. doi: 10.1038/274087a0. [DOI] [PubMed] [Google Scholar]
- Wetzel R., Kohli J., Altruda F., Söll D. Identification and nucleotide sequence of the sup8-e UGA-suppressor leucine tRNA from Schizosaccharomyces pombe. Mol Gen Genet. 1979 May 4;172(2):221–228. doi: 10.1007/BF00268286. [DOI] [PubMed] [Google Scholar]