Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1981 Jul 10;9(13):3159–3174. doi: 10.1093/nar/9.13.3159

Reaction kinetics of some important site-specific endonucleases.

B Hinsch, M R Kula
PMCID: PMC327339  PMID: 6269074

Abstract

Reaction kinetics of the site-specific endonucleases BamHI, BgIII, C1aI, EcoRI, HpaII, PstI, SaII, SmaI, and XorII were investigated employing some frequently used substrates. Six of these enzymes could be analyzed under steady-state conditions. Kinetic data were obtained from progress curves applying an integrated Michaelis-Menten equation. KM ranged from 4 x 10(-9) M to 4 x 10(-11) M. Activities also spanned two orders of magnitude. In the case of C1aI the analysis of the pre-steady-state kinetics ("burst reaction") allowed the assessment of several rate constants. The rate-limiting step is the very slow dissociation of the enzyme-product complex (0.22 min(-1)). This complex is formed from the enzyme-bound nicked intermediate at a rate of 1.7 min(-1). The introduction of the first cut is again faster by a factor of about 6. SmaI and XorII resembled C1aI in their kinetics. The burst reaction can be used for the easy and unambiguous determination of molar concentrations of site-specific endonucleases in any preparation, which is free of non-specific DNases.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkins G. L., Nimmo I. A. The reliability of Michaelis constants and maximum velocities estimated by using the integrated Michaelis-Menten equation. Biochem J. 1973 Dec;135(4):779–784. doi: 10.1042/bj1350779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berkner K. L., Folk W. R. The effects of substituted pyrimidines in DNAs on cleavage by sequence-specific endonucleases. J Biol Chem. 1979 Apr 10;254(7):2551–2560. [PubMed] [Google Scholar]
  3. Goebel W., Bonewald R. Class of small multicopy plasmids originating from the mutant antibiotic resistance factor R1 drd-19B2. J Bacteriol. 1975 Aug;123(2):658–665. doi: 10.1128/jb.123.2.658-665.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hershfield V., Boyer H. W., Yanofsky C., Lovett M. A., Helinski D. R. Plasmid ColEl as a molecular vehicle for cloning and amplification of DNA. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3455–3459. doi: 10.1073/pnas.71.9.3455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hinsch B., Kula M. R. Physical and kinetic properties of the site specific endonuclease Bam HI from Bacillus amylolique-faciens. Nucleic Acids Res. 1980 Feb 11;8(3):623–633. doi: 10.1093/nar/8.3.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hinsch B., Mayer H., Kula M. R. Binding of non-substrate nucleotides to a restriction endonuclease: a model for the interaction of bam HI with its recognition sequence. Nucleic Acids Res. 1980 Jun 11;8(11):2547–2559. doi: 10.1093/nar/8.11.2547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Livshitz M. A., Gursky G. V., Zasedatelev A. S., Volkenstein M. V. Equilibrium and kinetic aspects of protein-DNA recognition. Nucleic Acids Res. 1979;6(6):2217–2236. doi: 10.1093/nar/6.6.2217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Modrich P., Zabel D. EcoRI endonuclease. Physical and catalytic properties of the homogenous enzyme. J Biol Chem. 1976 Oct 10;251(19):5866–5874. [PubMed] [Google Scholar]
  9. Roberts R. J. Restriction and modification enzymes and their recognition sequences. Nucleic Acids Res. 1981 Jan 10;9(1):r75–r96. doi: 10.1093/nar/9.1.213-c. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ruben G., Spielman P., Tu C. D., Jay E., Siegel B., Wu R. Relaxed circular SV40 DNA as cleavage intermediate of two restriction endonucleases. Nucleic Acids Res. 1977 Jun;4(6):1803–1813. doi: 10.1093/nar/4.6.1803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Smith H. O. Nucleotide sequence specificity of restriction endonucleases. Science. 1979 Aug 3;205(4405):455–462. doi: 10.1126/science.377492. [DOI] [PubMed] [Google Scholar]
  12. Smith H. R., Humphreys G. O., Willshaw G. A., Anderson E. S. Characterisation of plasmids coding for the restriction endonuclease EcoRI. Mol Gen Genet. 1976 Feb 2;143(3):319–325. doi: 10.1007/BF00269410. [DOI] [PubMed] [Google Scholar]
  13. Sutcliffe J. G. pBR322 restriction map derived from the DNA sequence: accurate DNA size markers up to 4361 nucleotide pairs long. Nucleic Acids Res. 1978 Aug;5(8):2721–2728. doi: 10.1093/nar/5.8.2721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Thomas M., Davis R. W. Studies on the cleavage of bacteriophage lambda DNA with EcoRI Restriction endonuclease. J Mol Biol. 1975 Jan 25;91(3):315–328. doi: 10.1016/0022-2836(75)90383-6. [DOI] [PubMed] [Google Scholar]
  15. Wang R. Y., Shedlarski J. G., Farber M. B., Kuebbing D., Ehrlich M. Two sequence-specific endonucleases from Xanthomonas oryzae. Characterization and unusual properties. Biochim Biophys Acta. 1980 Feb 29;606(2):371–385. doi: 10.1016/0005-2787(80)90047-7. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES