Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1981 Aug 11;9(15):3779–3791. doi: 10.1093/nar/9.15.3779

Nonhistone chromatin proteins HMG-14 and HMG-17 bind preferentially to single-stranded DNA.

P J Isackson, G R Reeck
PMCID: PMC327391  PMID: 7279673

Abstract

Proteins extracted from chicken erythrocyte chromatin with 0.35 M NaCl were subjected to sequential chromatography on columns containing immobilized double-stranded and single-stranded DNA's. Two-dimensional electrophoresis of protein fractions revealed that HMG-14 and HMG-17 are among the proteins that are retained by the single-stranded DNA column in 0.2 M NaCl/l mM Tris-Cl (pH 7.5) after having failed to be retained by the double-stranded column under the same conditions. That suggests that those two proteins possess preferential affinity for single-stranded DNA. Further evidence for that was provided by chromatography of purified HMG-14 and of purified HMG-17 on single-stranded and double-stranded DNA columns. We discuss the possible relevance of our results to suggested functions of HMG-14 and HMG-17.

Full text

PDF
3779

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abercrombie B. D., Kneale G. G., Crane-Robinson C., Bradbury E. M., Goodwin G. H., Walker J. M., Johns E. W. Studies on the conformational properties of the high-mobility-group chromosomal protein HMG 17 and its interaction with DNA. Eur J Biochem. 1978 Mar;84(1):173–177. doi: 10.1111/j.1432-1033.1978.tb12154.x. [DOI] [PubMed] [Google Scholar]
  2. Baker C., Isenberg I., Goodwin G. H., Johns E. W. Physical studies of the nonhistone chromosomal proteins HMG-U and HMG-2. Biochemistry. 1976 Apr 20;15(8):1645–1649. doi: 10.1021/bi00653a009. [DOI] [PubMed] [Google Scholar]
  3. Bidney D. L., Reeck G. R. Association products and conformations of salt-dissociated and acid-extracted histones. A two-phase procedure for isolating salt-dissociated histones. Biochemistry. 1977 May 3;16(9):1844–1849. doi: 10.1021/bi00628a013. [DOI] [PubMed] [Google Scholar]
  4. Bidney D. L., Reeck G. R. Purification from cultured hepatoma cells of two nonhistone chromatin proteins with preferential affinity for single-stranded DNA: apparent analogy with calf thymus HMG proteins. Biochem Biophys Res Commun. 1978 Dec 14;85(3):1211–1218. doi: 10.1016/0006-291x(78)90671-x. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Cary P. D., Crane-Robinson C., Bradbury E. M., Javaherian K., Goodwin G. H., Johns E. W. Conformational studies of two non-histone chromosomal proteins and their interactions with DNA. Eur J Biochem. 1976 Mar 1;62(3):583–590. doi: 10.1111/j.1432-1033.1976.tb10193.x. [DOI] [PubMed] [Google Scholar]
  7. Gazit B., Panet A., Cedar H. Reconstitution of a deoxyribonuclease I-sensitive structure on active genes. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1787–1790. doi: 10.1073/pnas.77.4.1787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Germond J. E., Hirt B., Oudet P., Gross-Bellark M., Chambon P. Folding of the DNA double helix in chromatin-like structures from simian virus 40. Proc Natl Acad Sci U S A. 1975 May;72(5):1843–1847. doi: 10.1073/pnas.72.5.1843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goodwin G. H., Sanders C., Johns E. W. A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur J Biochem. 1973 Sep 21;38(1):14–19. doi: 10.1111/j.1432-1033.1973.tb03026.x. [DOI] [PubMed] [Google Scholar]
  10. Hosoda J., Moise H. Purification and physicochemical properties of limited proteolysis products of T4 helix destabilizing protein (gene 32 protein). J Biol Chem. 1978 Oct 25;253(20):7547–7558. [PubMed] [Google Scholar]
  11. Isackson P. J., Clow L. G., Reeck G. R. Comparison of the salt dissociations of high molecular weight HMG non-histone chromatin proteins from double-stranded DNA and from chromatin. FEBS Lett. 1981 Mar 9;125(1):30–34. doi: 10.1016/0014-5793(81)80989-1. [DOI] [PubMed] [Google Scholar]
  12. Isackson P. J., Debold W. A., Reeck G. R. Isolation and separation of chicken erythrocyte high mobility group non-histone chromatin proteins by chromatography on phosphocellulose. FEBS Lett. 1980 Oct 6;119(2):337–342. doi: 10.1016/0014-5793(80)80284-5. [DOI] [PubMed] [Google Scholar]
  13. Isackson P. J., Fishback J. L., Bidney D. L., Reeck G. R. Preferential affinity of high molecular weight high mobility group non-histone chromatin proteins for single-stranded DNA. J Biol Chem. 1979 Jul 10;254(13):5569–5572. [PubMed] [Google Scholar]
  14. Javaherian K., Amini S. Conformational study of calf thymus HMG14 nonhistone protein. Biochem Biophys Res Commun. 1978 Dec 29;85(4):1385–1391. doi: 10.1016/0006-291x(78)91157-9. [DOI] [PubMed] [Google Scholar]
  15. Jensen D. E., Kelly R. C., von Hippel P. H. DNA "melting" proteins. II. Effects of bacteriophage T4 gene 32-protein binding on the conformation and stability of nucleic acid structures. J Biol Chem. 1976 Nov 25;251(22):7215–7228. [PubMed] [Google Scholar]
  16. Levy B. W., Connor W., Dixon G. H. A subset of trout testis nucleosomes enriched in transcribed DNA sequences contains high mobility group proteins as major structural components. J Biol Chem. 1979 Feb 10;254(3):609–620. [PubMed] [Google Scholar]
  17. Litman R. M. A deoxyribonucleic acid polymerase from Micrococcus luteus (Micrococcus lysodeikticus) isolated on deoxyribonucleic acid-cellulose. J Biol Chem. 1968 Dec 10;243(23):6222–6233. [PubMed] [Google Scholar]
  18. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  19. O'Farrell P. Z., Goodman H. M., O'Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. doi: 10.1016/0092-8674(77)90176-3. [DOI] [PubMed] [Google Scholar]
  20. Panyim S., Chalkley R. High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys. 1969 Mar;130(1):337–346. doi: 10.1016/0003-9861(69)90042-3. [DOI] [PubMed] [Google Scholar]
  21. Peters E. H., Levy-Wilson B., Dixon G. H. Evidence for the location of high mobility group protein T in the internucleosomal linker regions of trout testis chromatin. J Biol Chem. 1979 May 10;254(9):3358–3361. [PubMed] [Google Scholar]
  22. Sandeen G., Wood W. I., Felsenfeld G. The interaction of high mobility proteins HMG14 and 17 with nucleosomes. Nucleic Acids Res. 1980 Sep 11;8(17):3757–3778. doi: 10.1093/nar/8.17.3757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Seyedin S. M., Kistler W. S. Levels of chromosomal protein high mobility group 2 parallel the proliferative activity of testis, skeletal muscle, and other organs. J Biol Chem. 1979 Nov 25;254(22):11264–11271. [PubMed] [Google Scholar]
  24. Walker J. M., Gooderham K., Hastings J. R., Mayes E., Johns E. W. The primary structures of non-histone chromosomal proteins HMG 1 and 2. FEBS Lett. 1980 Dec 29;122(2):264–270. doi: 10.1016/0014-5793(80)80453-4. [DOI] [PubMed] [Google Scholar]
  25. Walker J. M., Goodwin G. H., Johns E. W. The primary structure of the nucleosome-associated chromosomal protein HMG 14. FEBS Lett. 1979 Apr 15;100(2):394–398. doi: 10.1016/0014-5793(79)80378-6. [DOI] [PubMed] [Google Scholar]
  26. Walker J. M., Hastings J. R., Johns E. W. The primary structure of a non-histone chromosomal protein. Eur J Biochem. 1977 Jun 15;76(2):461–468. doi: 10.1111/j.1432-1033.1977.tb11616.x. [DOI] [PubMed] [Google Scholar]
  27. Weisbrod S., Groudine M., Weintraub H. Interaction of HMG 14 and 17 with actively transcribed genes. Cell. 1980 Jan;19(1):289–301. doi: 10.1016/0092-8674(80)90410-9. [DOI] [PubMed] [Google Scholar]
  28. Weisbrod S., Weintraub H. Isolation of a subclass of nuclear proteins responsible for conferring a DNase I-sensitive structure on globin chromatin. Proc Natl Acad Sci U S A. 1979 Feb;76(2):630–634. doi: 10.1073/pnas.76.2.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weisbrod S., Weintraub H. Isolation of actively transcribed nucleosomes using immobilized HMG 14 and 17 and an analysis of alpha-globin chromatin. Cell. 1981 Feb;23(2):391–400. doi: 10.1016/0092-8674(81)90134-3. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES