Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1981 Aug 11;9(15):3851–3861. doi: 10.1093/nar/9.15.3851

Determination of base pairing in yeast 5S and 5.8S RNA infrared spectroscopy.

J Stulz, T Ackermann, B Appel, V A Erdmann
PMCID: PMC327396  PMID: 7024920

Abstract

Infrared Spectroscopy was used to determine the numbers of base pairs for yeast 5S RNA and 5.8S RNA. The spectra were recorded at 20 degrees C and 50 degrees C, where tertiary interactions are assumed to be of less importance. It may be concluded that the structure of both RNAs is highly ordered and that there are large contributions of tertiary interactions. The results are compared with data derived from structural models that were proposed in the literature as well as with data previously published for prokaryotic 5S RNAs.

Full text

PDF
3851

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appel B., Erdmann V. A., Stulz J., Ackerman T. Determination of base pairing in Escherichia coli and Bacillus stearothermophilus 5S RNAs by infrared spectroscopy. Nucleic Acids Res. 1979 Oct 25;7(4):1043–1057. doi: 10.1093/nar/7.4.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cramer F., Erdmann V. A. Amount of adenine and uracil base pairs in E. coli 23S, 16S and 5S ribosomal RNA. Nature. 1968 Apr 6;218(5136):92–93. doi: 10.1038/218092a0. [DOI] [PubMed] [Google Scholar]
  3. Erdmann V. A. Structure and function of 5S and 5.8 S RNA. Prog Nucleic Acid Res Mol Biol. 1976;18:45–90. [PubMed] [Google Scholar]
  4. GRUNBERG-MANAGO M., ORTIZ P. J., OCHOA S. Enzymic synthesis of polynucleotides. I. Polynucleotide phosphorylase of azotobacter vinelandii. Biochim Biophys Acta. 1956 Apr;20(1):269–285. doi: 10.1016/0006-3002(56)90286-4. [DOI] [PubMed] [Google Scholar]
  5. Hori H., Osawa S. Evolutionary change in 5S RNA secondary structure and a phylogenic tree of 54 5S RNA species. Proc Natl Acad Sci U S A. 1979 Jan;76(1):381–385. doi: 10.1073/pnas.76.1.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hori H., Osawa S. Evolutionary change in 5S RNA secondary structure and a phylogenic tree of 54 5S RNA species. Proc Natl Acad Sci U S A. 1979 Jan;76(1):381–385. doi: 10.1073/pnas.76.1.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kao T. H., Crothers D. M. A proton-coupled conformational switch of Escherichia coli 5S ribosomal RNA. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3360–3364. doi: 10.1073/pnas.77.6.3360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ladner J. E., Jack A., Robertus J. D., Brown R. S., Rhodes D., Clark B. F., Klug A. Structure of yeast phenylalanine transfer RNA at 2.5 A resolution. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4414–4418. doi: 10.1073/pnas.72.11.4414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Luoma G. A., Burns P. D., Bruce R. E., Marshall A. G. Melting of Saccharomyces cerevisiae 5S ribonucleic acid: ultraviolet absorption, circular dichroism, and 360-MHz proton nuclear magnetic resonance spectroscopy. Biochemistry. 1980 Nov 11;19(23):5456–5462. doi: 10.1021/bi00564a047. [DOI] [PubMed] [Google Scholar]
  10. Luoma G. A., Marshall A. G. Lasar Raman evidence for a new cloverleaf secondary structure for eucaryotic 5 S RNA. J Mol Biol. 1978 Oct 15;125(1):95–105. doi: 10.1016/0022-2836(78)90256-5. [DOI] [PubMed] [Google Scholar]
  11. Luoma G. A., Marshall A. G. Laser Raman evidence for new cloverleaf secondary structures for eukaryotic 5.8S RNA and prokaryotic 5S RNA. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4901–4905. doi: 10.1073/pnas.75.10.4901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nishikawa K., Takemura S. Nucleotide sequence of 5 S RNA from Torulopsis utilis. FEBS Lett. 1974 Mar 15;40(1):106–109. doi: 10.1016/0014-5793(74)80904-x. [DOI] [PubMed] [Google Scholar]
  13. Pochon F., Michelson A. M. Polynucleotides. VI. Interaction between polyguanylic acid and polycytidylic acid. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1425–1430. doi: 10.1073/pnas.53.6.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Quigley G. J., Wang A. H., Seeman N. C., Suddath F. L., Rich A., Sussman J. L., Kim S. H. Hydrogen bonding in yeast phenylalanine transfer RNA. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4866–4870. doi: 10.1073/pnas.72.12.4866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Richards E. G., Geroch M. E., Simpkins H., Lecanidou R. Optical properties and base pairing of E. coli 5S RNA. Biopolymers. 1972;11(5):1031–1039. doi: 10.1002/bip.1972.360110508. [DOI] [PubMed] [Google Scholar]
  16. Rubin G. M. The nucleotide sequence of Saccharomyces cerevisiae 5.8 S ribosomal ribonucleic acid. J Biol Chem. 1973 Jun 10;248(11):3860–3875. [PubMed] [Google Scholar]
  17. Thomas G. J., Jr Determination of the base pairing content of ribonucleic acids by infrared spectroscopy. Biopolymers. 1969;7(3):325–334. doi: 10.1002/bip.1969.360070305. [DOI] [PubMed] [Google Scholar]
  18. Uhlenbeck O. C., Chirikjian J. G., Fresco J. R. Oligonucleotide binding to the native and denatured conformers of yeast transfer RNA-3 Lea. J Mol Biol. 1974 Nov 5;89(3):495–504. doi: 10.1016/0022-2836(74)90478-1. [DOI] [PubMed] [Google Scholar]
  19. Van N. T., Nazar R. N., Sitz T. O. Comparative studies on the secondary structure of eukaryotic 5.8S ribosomal RNA. Biochemistry. 1977 Aug 23;16(17):3754–3759. doi: 10.1021/bi00636a004. [DOI] [PubMed] [Google Scholar]
  20. Vigne R., Jordan B. R. Partial enzyme digestion studies on Escherichia coli, Pseudomonas, Chlorella, Drosophila, HeLa and yeast 5S RNAs support a general class of 5S RNA models. J Mol Evol. 1977 Sep 20;10(1):77–86. doi: 10.1007/BF01796136. [DOI] [PubMed] [Google Scholar]
  21. WYATT G. R. The purine and pyrimidine composition of deoxypentose nucleic acids. Biochem J. 1951 May;48(5):584–590. doi: 10.1042/bj0480584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Willick G. E., Nazar R. N., Van N. T. Physicochemical studies on the 5S ribonucleic acid-protein complex from a eucaryote, Saccharomyces cerevisiae. Biochemistry. 1980 Jun 10;19(12):2738–2742. doi: 10.1021/bi00553a031. [DOI] [PubMed] [Google Scholar]
  23. Wong Y. P., Kearns D. R., Reid B. R., Shulman R. G. The extent of base pairing in 5 s RNA. Yeast 5 s RNA. J Mol Biol. 1972 Dec 30;72(3):741–749. doi: 10.1016/0022-2836(72)90188-x. [DOI] [PubMed] [Google Scholar]
  24. Wrede P., Erdmann V. A. Escherichia coli 5S RNA binding proteins L18 and L25 interact with 5.8S RNA but not with 5S RNA from yeast ribosomes. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2706–2709. doi: 10.1073/pnas.74.7.2706. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES