Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 11;68(Pt 2):i15. doi: 10.1107/S1600536812000438

K3Al2As3O12

Berthold Stöger a, Matthias Weil a,*
PMCID: PMC3274838  PMID: 22346791

Abstract

Single crystals of K3Al2As3O12, tripotassium dialuminotriarsenate(V), were obtained unintentionally by the reaction of KAsO3 with a corundum crucible at 973 K. The asymmetric unit contains three K, two Al, three As and 12 O atoms. The structure of the title compound is isotypic with those of other K3 M2 X 3O12 (M′ = Al, Ga; X = P, As) structures and is made up of a three-dimensional network of corner-sharing [AlO4] and [AsO4] tetra­hedra. The three K+ cations are located in channels running along the [100], [001], [101] and [10Inline graphic] directions, exhibiting different coordination numbers of 9, 8 and 6, respectively. All corresponding [KOx] polyhedra are considerably distorted.

Related literature

For a recent review on NASICON-type materials, see: Anantharamulu et al. (2011). For isotypic K3 M2 X 3O12 structures, see: Beaurain et al. (2008) and Yakubovich et al. (2008) for K3Ga2P3O12; Boughzala et al. (1997) for the solid solution K3Al2(As1.92P1.08)O12; Devi & Vidyasagar (2000) for K3Al2P3O12. For the isopointal structure of Tl3Al2P3O12, see: Devi & Vidyasagar (2000). For background to the bond-valence method, see: Brown & Altermatt (1985).

Experimental

Crystal data

  • K3Al2As3O12

  • M r = 588

  • Orthorhombic, Inline graphic

  • a = 8.7943 (2) Å

  • b = 17.4400 (2) Å

  • c = 8.6610 (3) Å

  • V = 1328.36 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.63 mm−1

  • T = 100 K

  • 0.10 × 0.06 × 0.01 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.49, T max = 0.92

  • 52293 measured reflections

  • 9623 independent reflections

  • 8606 reflections with I > 3σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 3σ(F 2)] = 0.018

  • wR(F 2) = 0.039

  • S = 0.80

  • 9623 reflections

  • 181 parameters

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983), 3882 Friedel pairs

  • Flack parameter: 0.008 (3)

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus; method used to solve structure: coordinates taken from an isotypic structure; program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812000438/gw2112sup1.cif

e-68-00i15-sup1.cif (15.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000438/gw2112Isup2.hkl

e-68-00i15-Isup2.hkl (461.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

During crystal growth studies of KAsO3, we inadvertently obtained single crystals with composition K3Al2As3O12 from an attacked corundum crucible. Many oxides with general formula MxM'2X3O12 crystallize with three-dimensional framework structures (Devi & Vidyasagar, 2000) and are of technological interest. Most notably, compounds crystallizing in the NASICON (Na3Zr2Si2PO12) structure type are excellent ion conductors and have been intensely studied. A recent review on compounds with the NASICON structure has been given by Anantharamulu et al. (2011).

The structure of K3Al2As3O12 is isotypic with the phosphate analogue K3Al2P3O12 (Devi & Vidyasagar, 2000), the mixed arsenate/phosphate solid solution K3Al2As1.92P1.08O12 (Boughzala et al., 1997) and K3Ga2P3O12 (Beaurain et al., 2008; Yakubovich et al., 2008). Trithallium dialuminotriphosphate, Tl3Al2P3O12 (Devi & Vidyasagar, 2000), can be considered as isopointal to the title compound, because it features distinctly different coordinations of the Al sites and the cationic network due to the electron lone pairs of the Tl+ ions.

Whereas in the NASICON structure type the M' site is octahedrally and the X site tetrahedrally coordinated, in the title compound both sites exhibit a tetrahedral coordination. Two crystallographically different [AlO4] and three [AlO4] tetrahedra, all on general positions, are linked via their corners to a complex three-dimensional network, whereby [AlO4] units connect only to [AsO4] units and vice-versa. This network can be decomposed into undulating sheets normal to [010] (Al1, Al2, As1, As2) which are connected by [AsO4] units (As3) (Fig. 1).

The three different K+ cations are located in channels running along the [100] and [001] (K1, K2) (Fig. 1) as well as the [101] and [101] (K3) (Fig. 2) directions. Considering K–O distances up to 3.5 Å as relevant for first coordination spheres, the K+ cations are coordinated by 9 (K1), 8 (K1) and 6 (K3) O atoms, respectively, all in the form of irregular [KOx] polyhedra. The total bond valence sums (parameters: R0 = 2.132 Å, b = 0.37 (Brown & Altermatt, 1985)), 1.08 (K1), 1.04 (K2) and 0.90 (K3) valence units (v.u.) are close to the expected value of 1 v.u. and point to a slight undersaturation of K3. The coordination of the K+ cations is very similar in all isotypic structures. The main difference in these structures pertains to the bond lengths of the XO4 tetrahedra. Corresponding mean bond lengths are 1.746 Å for AlO4 and 1.680 Å for AsO4 tetrahedra in the title compound; 1.737 Å for AlO4 and 1.527 Å for PO4 tetrahedra in K3Al2P3O12; 1.730 Å for AlO4 and 1.615 Å for (As/P)O4 tetrahedra in K3Al2As1.92P1.08O12; 1.816 Å for GaO4 and 1.535 Å for PO4 tetrahedra in K3Ga2P3O12.

Experimental

K2CO3 and H3AsO4 were obtained commercially and used without purification. 10 g 80%wt H3AsO4 were titrated against an aqueous K2CO3 solution using methyl red as indicator. The water was evaporated and the residue recrystallized from water to obtain KH2AsO4. This solid was then heated in a corundum crucible at 973 K, cooled to 633 K over 24 h and quenched. Few colourless crystals of the title compound were isolated from the reaction mixture.

Refinement

The first refinement cycle was performed using the published atomic coordinates of K3Al2As1.92P1.08O12 (Boughzala et al., 1997) as starting parameters.

Figures

Fig. 1.

Fig. 1.

The crystal structure of K3Al2As3O12 viewed down [100], showing sheets of corner-sharing [AsO4] and [AlO4] tetrahedra extending parallel to (010). Displacement ellipsoids are drawn at the 90% probability level.

Fig. 2.

Fig. 2.

The crystal structure of K3Al2As3O12 viewed down [101]. Displacement ellipsoids are drawn at the 90% probability level.

Crystal data

K3Al2As3O12 F(000) = 1112
Mr = 588 Dx = 2.939 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 54411 reflections
a = 8.7943 (2) Å θ = 3.3–44.8°
b = 17.4400 (2) Å µ = 8.63 mm1
c = 8.6610 (3) Å T = 100 K
V = 1328.36 (6) Å3 Plate, colourless
Z = 4 0.10 × 0.06 × 0.01 mm

Data collection

Bruker APEXII CCD diffractometer 9623 independent reflections
Radiation source: X-ray tube 8606 reflections with I > 3σ(I)
graphite Rint = 0.038
ω and φ scans θmax = 45.1°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −17→17
Tmin = 0.49, Tmax = 0.92 k = −34→34
52293 measured reflections l = −15→17

Refinement

Refinement on F2 Primary atom site location: isomorphous structure methods
R[F2 > 2σ(F2)] = 0.018 Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
wR(F2) = 0.039 (Δ/σ)max = 0.003
S = 0.80 Δρmax = 0.33 e Å3
9623 reflections Δρmin = −0.31 e Å3
181 parameters Absolute structure: Flack (1983), 3882 Friedel pairs
0 restraints Flack parameter: 0.008 (3)
1 constraint

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
As1 0.156896 (11) 0.215743 (6) 0.0009 0.004155 (18)
As2 0.293241 (12) 0.313601 (6) 0.511929 (16) 0.004909 (19)
As3 0.236068 (12) 0.502941 (6) 0.085202 (18) 0.005355 (19)
K1 0.01017 (3) 0.402188 (14) 0.84037 (3) 0.00837 (4)
K2 0.95033 (3) 0.354962 (14) 0.30906 (3) 0.00818 (4)
K3 0.68161 (3) 0.488891 (15) 0.11580 (3) 0.01179 (5)
Al1 0.34851 (4) 0.34012 (2) 0.14668 (4) 0.00492 (7)
Al2 0.13204 (4) 0.16767 (2) 0.65562 (4) 0.00520 (7)
O1 0.29089 (10) 0.15184 (5) 0.03110 (9) 0.00824 (17)
O2 0.02014 (10) 0.20900 (5) 0.13689 (9) 0.00746 (16)
O3 0.21755 (9) 0.30785 (4) 0.00781 (10) 0.00643 (14)
O4 0.06929 (10) 0.20939 (5) 0.82779 (9) 0.00730 (16)
O5 0.17013 (13) 0.37287 (6) 0.58794 (12) 0.0139 (2)
O6 0.47459 (12) 0.34183 (7) 0.53518 (11) 0.0168 (2)
O7 0.27956 (11) 0.22138 (5) 0.57055 (11) 0.01044 (18)
O8 0.26654 (10) 0.30933 (6) 0.31927 (9) 0.00936 (18)
O9 0.07409 (11) 0.46866 (6) 0.15273 (11) 0.01076 (18)
O10 0.29028 (11) 0.57855 (5) 0.19818 (10) 0.00894 (17)
O11 0.23407 (11) 0.52699 (6) 0.90078 (10) 0.01074 (19)
O12 0.37999 (10) 0.43772 (5) 0.12022 (10) 0.00883 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
As1 0.00437 (3) 0.00356 (3) 0.00453 (3) 0.00007 (3) −0.00035 (3) −0.00027 (3)
As2 0.00554 (3) 0.00472 (4) 0.00447 (3) −0.00042 (3) 0.00028 (3) 0.00036 (3)
As3 0.00642 (4) 0.00336 (3) 0.00628 (3) −0.00018 (3) −0.00018 (3) −0.00019 (3)
K1 0.00698 (7) 0.01015 (8) 0.00797 (6) −0.00039 (6) 0.00040 (5) 0.00102 (6)
K2 0.00765 (8) 0.00734 (8) 0.00955 (7) 0.00014 (6) 0.00017 (6) 0.00078 (6)
K3 0.01516 (10) 0.00792 (9) 0.01230 (8) −0.00147 (7) −0.00295 (7) −0.00020 (6)
Al1 0.00487 (12) 0.00439 (12) 0.00550 (10) −0.00023 (9) −0.00019 (9) −0.00024 (9)
Al2 0.00592 (12) 0.00438 (12) 0.00532 (10) 0.00071 (10) −0.00068 (9) −0.00031 (9)
O1 0.0078 (3) 0.0069 (3) 0.0101 (3) 0.0029 (2) −0.0011 (2) −0.0004 (2)
O2 0.0062 (3) 0.0094 (3) 0.0067 (2) −0.0020 (2) 0.0017 (2) −0.0006 (2)
O3 0.0075 (2) 0.0046 (2) 0.0072 (2) −0.0014 (2) −0.0019 (2) 0.0005 (2)
O4 0.0078 (3) 0.0089 (3) 0.0052 (2) 0.0016 (2) −0.0019 (2) −0.0019 (2)
O5 0.0193 (4) 0.0088 (3) 0.0138 (3) 0.0037 (3) 0.0083 (3) −0.0016 (3)
O6 0.0101 (3) 0.0274 (5) 0.0130 (3) −0.0102 (3) −0.0069 (3) 0.0108 (3)
O7 0.0121 (3) 0.0056 (3) 0.0136 (3) 0.0006 (2) 0.0041 (2) 0.0026 (2)
O8 0.0094 (3) 0.0144 (4) 0.0043 (2) −0.0031 (3) −0.0001 (2) 0.0002 (2)
O9 0.0084 (3) 0.0083 (3) 0.0155 (3) −0.0023 (2) 0.0031 (2) 0.0001 (3)
O10 0.0131 (3) 0.0043 (3) 0.0094 (3) −0.0018 (2) 0.0003 (2) −0.0010 (2)
O11 0.0138 (3) 0.0121 (4) 0.0063 (3) 0.0010 (3) −0.0004 (2) 0.0016 (2)
O12 0.0085 (3) 0.0044 (3) 0.0136 (3) 0.0006 (2) −0.0019 (2) 0.0002 (2)

Geometric parameters (Å, °)

K1—O1i 2.7084 (9) Al1—O8 1.7443 (9)
K1—O3ii 2.8524 (8) Al1—O12 1.7396 (9)
K1—O5 2.6496 (11) Al2—O4 1.7485 (9)
K1—O9ii 2.9964 (10) Al2—O6vii 1.7415 (11)
K1—O9iii 2.8747 (10) Al2—O7 1.7616 (10)
K1—O10iii 2.9344 (10) Al2—O10viii 1.7373 (10)
K1—O11 2.9814 (10) As1—O1 1.6429 (9)
K2—O1iv 2.7885 (9) As1—O2 1.6875 (8)
K2—O2v 3.0134 (9) As1—O3 1.6936 (8)
K2—O7iv 3.0260 (10) As1—O4ix 1.6893 (8)
K2—O8v 2.8939 (10) As2—O5 1.6352 (10)
K2—O9v 2.6362 (10) As2—O6 1.6812 (11)
K2—O11vi 2.7384 (10) As2—O7 1.6909 (9)
K3—O1iv 2.7360 (9) As2—O8 1.6867 (8)
K3—O5vi 2.7515 (10) As3—O9 1.6519 (9)
K3—O11vi 2.5921 (9) As3—O10 1.7098 (9)
K3—O12 2.7989 (10) As3—O11ix 1.6515 (9)
Al1—O2iv 1.7376 (9) As3—O12 1.7285 (9)
Al1—O3 1.7578 (9)
O1i—K1—O3ii 86.82 (3) O1iv—K3—O5vi 126.59 (3)
O1i—K1—O5 144.51 (3) O1iv—K3—O11vi 93.38 (3)
O1i—K1—O9ii 73.59 (3) O1iv—K3—O12 92.90 (3)
O1i—K1—O9iii 115.72 (3) O5vi—K3—O11vi 92.38 (3)
O1i—K1—O10iii 69.80 (3) O5vi—K3—O12 136.86 (3)
O1i—K1—O11 128.11 (3) O11vi—K3—O12 102.95 (3)
O3ii—K1—O5 88.21 (3) O2iv—Al1—O3 112.21 (4)
O3ii—K1—O9ii 69.16 (3) O2iv—Al1—O8 104.42 (4)
O3ii—K1—O9iii 154.71 (3) O2iv—Al1—O12 109.74 (5)
O3ii—K1—O10iii 148.77 (2) O3—Al1—O8 102.53 (4)
O3ii—K1—O11 84.81 (2) O3—Al1—O12 109.11 (4)
O5—K1—O9ii 136.06 (3) O8—Al1—O12 118.68 (5)
O5—K1—O9iii 79.72 (3) O4—Al2—O6vii 107.43 (5)
O5—K1—O10iii 98.85 (3) O4—Al2—O7 111.59 (4)
O5—K1—O11 86.28 (3) O4—Al2—O10viii 108.39 (4)
O9ii—K1—O9iii 104.81 (3) O6vii—Al2—O7 112.68 (5)
O9ii—K1—O10iii 120.24 (3) O6vii—Al2—O10viii 110.77 (6)
O9ii—K1—O11 55.61 (2) O7—Al2—O10viii 105.95 (5)
O9iii—K1—O10iii 56.01 (3) O1—As1—O2 110.66 (4)
O9iii—K1—O11 72.39 (3) O1—As1—O3 114.32 (4)
O10iii—K1—O11 125.79 (3) O1—As1—O4ix 115.08 (4)
O1iv—K2—O2v 68.86 (2) O2—As1—O3 105.42 (4)
O1iv—K2—O7iv 112.20 (3) O2—As1—O4ix 106.85 (4)
O1iv—K2—O8v 119.86 (2) O3—As1—O4ix 103.72 (4)
O1iv—K2—O9v 78.24 (3) O5—As2—O6 113.25 (6)
O1iv—K2—O11vi 89.12 (3) O5—As2—O7 115.67 (5)
O2v—K2—O7iv 95.73 (2) O5—As2—O8 109.52 (5)
O2v—K2—O8v 65.61 (2) O6—As2—O7 108.07 (5)
O2v—K2—O9v 107.28 (3) O6—As2—O8 105.28 (4)
O2v—K2—O11vi 154.06 (3) O7—As2—O8 104.19 (5)
O7iv—K2—O8v 109.45 (3) O9—As3—O10 108.48 (5)
O7iv—K2—O9v 156.96 (3) O9—As3—O11ix 115.16 (5)
O7iv—K2—O11vi 79.62 (3) O9—As3—O12 109.34 (4)
O8v—K2—O9v 79.97 (3) O10—As3—O11ix 111.13 (5)
O8v—K2—O11vi 140.08 (3) O10—As3—O12 101.71 (4)
O9v—K2—O11vi 80.10 (3) O11ix—As3—O12 110.16 (5)

Symmetry codes: (i) x−1/2, −y+1/2, z+1; (ii) x, y, z+1; (iii) −x, −y+1, z+1/2; (iv) x+1/2, −y+1/2, z; (v) x+1, y, z; (vi) −x+1, −y+1, z−1/2; (vii) x−1/2, −y+1/2, z; (viii) −x+1/2, y−1/2, z+1/2; (ix) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2112).

References

  1. Anantharamulu, N., Koteswara Rao, K., Rambabu, G., Vijaya Kumar, B., Velchuri Radha & Vithal, M. (2011). J. Mater. Sci. 46, 2821–2837.
  2. Beaurain, M., Astier, R., Lee, A. van der & Armand, P. (2008). Acta Cryst. C64, i5–i8. [DOI] [PubMed]
  3. Boughzala, H., Driss, A. & Jouini, T. (1997). Acta Cryst. C53, 3–5.
  4. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  5. Bruker (2008). SAINT-Plus, APEX2 and SADABS Bruker AXS Inc., Madison, Wisconsin, USA
  6. Devi, R. N. & Vidyasagar, K. (2000). Inorg. Chem. 39, 2391–2396. [DOI] [PubMed]
  7. Dowty, E. (2006). ATOMS Shape Software, Kingsport, Tennessee, USA.
  8. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  9. Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  11. Yakubovich, O. V., Steele, I. & Kireev, V. V. (2008). Cryst. Rep. 53, 952–959.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812000438/gw2112sup1.cif

e-68-00i15-sup1.cif (15.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000438/gw2112Isup2.hkl

e-68-00i15-Isup2.hkl (461.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES