Abstract
Single crystals of K3Al2As3O12, tripotassium dialuminotriarsenate(V), were obtained unintentionally by the reaction of KAsO3 with a corundum crucible at 973 K. The asymmetric unit contains three K, two Al, three As and 12 O atoms. The structure of the title compound is isotypic with those of other K3
M′2
X
3O12 (M′ = Al, Ga; X = P, As) structures and is made up of a three-dimensional network of corner-sharing [AlO4] and [AsO4] tetrahedra. The three K+ cations are located in channels running along the [100], [001], [101] and [10
] directions, exhibiting different coordination numbers of 9, 8 and 6, respectively. All corresponding [KOx] polyhedra are considerably distorted.
Related literature
For a recent review on NASICON-type materials, see: Anantharamulu et al. (2011 ▶). For isotypic K3 M′2 X 3O12 structures, see: Beaurain et al. (2008 ▶) and Yakubovich et al. (2008 ▶) for K3Ga2P3O12; Boughzala et al. (1997 ▶) for the solid solution K3Al2(As1.92P1.08)O12; Devi & Vidyasagar (2000 ▶) for K3Al2P3O12. For the isopointal structure of Tl3Al2P3O12, see: Devi & Vidyasagar (2000 ▶). For background to the bond-valence method, see: Brown & Altermatt (1985 ▶).
Experimental
Crystal data
K3Al2As3O12
M r = 588
Orthorhombic,
a = 8.7943 (2) Å
b = 17.4400 (2) Å
c = 8.6610 (3) Å
V = 1328.36 (6) Å3
Z = 4
Mo Kα radiation
μ = 8.63 mm−1
T = 100 K
0.10 × 0.06 × 0.01 mm
Data collection
Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2008 ▶) T min = 0.49, T max = 0.92
52293 measured reflections
9623 independent reflections
8606 reflections with I > 3σ(I)
R int = 0.038
Refinement
R[F 2 > 3σ(F 2)] = 0.018
wR(F 2) = 0.039
S = 0.80
9623 reflections
181 parameters
Δρmax = 0.33 e Å−3
Δρmin = −0.31 e Å−3
Absolute structure: Flack (1983 ▶), 3882 Friedel pairs
Flack parameter: 0.008 (3)
Data collection: APEX2 (Bruker, 2008 ▶); cell refinement: SAINT-Plus (Bruker, 2008 ▶); data reduction: SAINT-Plus; method used to solve structure: coordinates taken from an isotypic structure; program(s) used to refine structure: JANA2006 (Petříček et al., 2006 ▶); molecular graphics: ATOMS (Dowty, 2006 ▶); software used to prepare material for publication: publCIF (Westrip, 2010 ▶).
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812000438/gw2112sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000438/gw2112Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Comment
During crystal growth studies of KAsO3, we inadvertently obtained single crystals with composition K3Al2As3O12 from an attacked corundum crucible. Many oxides with general formula MxM'2X3O12 crystallize with three-dimensional framework structures (Devi & Vidyasagar, 2000) and are of technological interest. Most notably, compounds crystallizing in the NASICON (Na3Zr2Si2PO12) structure type are excellent ion conductors and have been intensely studied. A recent review on compounds with the NASICON structure has been given by Anantharamulu et al. (2011).
The structure of K3Al2As3O12 is isotypic with the phosphate analogue K3Al2P3O12 (Devi & Vidyasagar, 2000), the mixed arsenate/phosphate solid solution K3Al2As1.92P1.08O12 (Boughzala et al., 1997) and K3Ga2P3O12 (Beaurain et al., 2008; Yakubovich et al., 2008). Trithallium dialuminotriphosphate, Tl3Al2P3O12 (Devi & Vidyasagar, 2000), can be considered as isopointal to the title compound, because it features distinctly different coordinations of the Al sites and the cationic network due to the electron lone pairs of the Tl+ ions.
Whereas in the NASICON structure type the M' site is octahedrally and the X site tetrahedrally coordinated, in the title compound both sites exhibit a tetrahedral coordination. Two crystallographically different [AlO4] and three [AlO4] tetrahedra, all on general positions, are linked via their corners to a complex three-dimensional network, whereby [AlO4] units connect only to [AsO4] units and vice-versa. This network can be decomposed into undulating sheets normal to [010] (Al1, Al2, As1, As2) which are connected by [AsO4] units (As3) (Fig. 1).
The three different K+ cations are located in channels running along the [100] and [001] (K1, K2) (Fig. 1) as well as the [101] and [101] (K3) (Fig. 2) directions. Considering K–O distances up to 3.5 Å as relevant for first coordination spheres, the K+ cations are coordinated by 9 (K1), 8 (K1) and 6 (K3) O atoms, respectively, all in the form of irregular [KOx] polyhedra. The total bond valence sums (parameters: R0 = 2.132 Å, b = 0.37 (Brown & Altermatt, 1985)), 1.08 (K1), 1.04 (K2) and 0.90 (K3) valence units (v.u.) are close to the expected value of 1 v.u. and point to a slight undersaturation of K3. The coordination of the K+ cations is very similar in all isotypic structures. The main difference in these structures pertains to the bond lengths of the XO4 tetrahedra. Corresponding mean bond lengths are 1.746 Å for AlO4 and 1.680 Å for AsO4 tetrahedra in the title compound; 1.737 Å for AlO4 and 1.527 Å for PO4 tetrahedra in K3Al2P3O12; 1.730 Å for AlO4 and 1.615 Å for (As/P)O4 tetrahedra in K3Al2As1.92P1.08O12; 1.816 Å for GaO4 and 1.535 Å for PO4 tetrahedra in K3Ga2P3O12.
Experimental
K2CO3 and H3AsO4 were obtained commercially and used without purification. 10 g 80%wt H3AsO4 were titrated against an aqueous K2CO3 solution using methyl red as indicator. The water was evaporated and the residue recrystallized from water to obtain KH2AsO4. This solid was then heated in a corundum crucible at 973 K, cooled to 633 K over 24 h and quenched. Few colourless crystals of the title compound were isolated from the reaction mixture.
Refinement
The first refinement cycle was performed using the published atomic coordinates of K3Al2As1.92P1.08O12 (Boughzala et al., 1997) as starting parameters.
Figures
Fig. 1.
The crystal structure of K3Al2As3O12 viewed down [100], showing sheets of corner-sharing [AsO4] and [AlO4] tetrahedra extending parallel to (010). Displacement ellipsoids are drawn at the 90% probability level.
Fig. 2.
The crystal structure of K3Al2As3O12 viewed down [101]. Displacement ellipsoids are drawn at the 90% probability level.
Crystal data
| K3Al2As3O12 | F(000) = 1112 |
| Mr = 588 | Dx = 2.939 Mg m−3 |
| Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: P 2c -2n | Cell parameters from 54411 reflections |
| a = 8.7943 (2) Å | θ = 3.3–44.8° |
| b = 17.4400 (2) Å | µ = 8.63 mm−1 |
| c = 8.6610 (3) Å | T = 100 K |
| V = 1328.36 (6) Å3 | Plate, colourless |
| Z = 4 | 0.10 × 0.06 × 0.01 mm |
Data collection
| Bruker APEXII CCD diffractometer | 9623 independent reflections |
| Radiation source: X-ray tube | 8606 reflections with I > 3σ(I) |
| graphite | Rint = 0.038 |
| ω and φ scans | θmax = 45.1°, θmin = 2.6° |
| Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −17→17 |
| Tmin = 0.49, Tmax = 0.92 | k = −34→34 |
| 52293 measured reflections | l = −15→17 |
Refinement
| Refinement on F2 | Primary atom site location: isomorphous structure methods |
| R[F2 > 2σ(F2)] = 0.018 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2) |
| wR(F2) = 0.039 | (Δ/σ)max = 0.003 |
| S = 0.80 | Δρmax = 0.33 e Å−3 |
| 9623 reflections | Δρmin = −0.31 e Å−3 |
| 181 parameters | Absolute structure: Flack (1983), 3882 Friedel pairs |
| 0 restraints | Flack parameter: 0.008 (3) |
| 1 constraint |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| As1 | 0.156896 (11) | 0.215743 (6) | 0.0009 | 0.004155 (18) | |
| As2 | 0.293241 (12) | 0.313601 (6) | 0.511929 (16) | 0.004909 (19) | |
| As3 | 0.236068 (12) | 0.502941 (6) | 0.085202 (18) | 0.005355 (19) | |
| K1 | 0.01017 (3) | 0.402188 (14) | 0.84037 (3) | 0.00837 (4) | |
| K2 | 0.95033 (3) | 0.354962 (14) | 0.30906 (3) | 0.00818 (4) | |
| K3 | 0.68161 (3) | 0.488891 (15) | 0.11580 (3) | 0.01179 (5) | |
| Al1 | 0.34851 (4) | 0.34012 (2) | 0.14668 (4) | 0.00492 (7) | |
| Al2 | 0.13204 (4) | 0.16767 (2) | 0.65562 (4) | 0.00520 (7) | |
| O1 | 0.29089 (10) | 0.15184 (5) | 0.03110 (9) | 0.00824 (17) | |
| O2 | 0.02014 (10) | 0.20900 (5) | 0.13689 (9) | 0.00746 (16) | |
| O3 | 0.21755 (9) | 0.30785 (4) | 0.00781 (10) | 0.00643 (14) | |
| O4 | 0.06929 (10) | 0.20939 (5) | 0.82779 (9) | 0.00730 (16) | |
| O5 | 0.17013 (13) | 0.37287 (6) | 0.58794 (12) | 0.0139 (2) | |
| O6 | 0.47459 (12) | 0.34183 (7) | 0.53518 (11) | 0.0168 (2) | |
| O7 | 0.27956 (11) | 0.22138 (5) | 0.57055 (11) | 0.01044 (18) | |
| O8 | 0.26654 (10) | 0.30933 (6) | 0.31927 (9) | 0.00936 (18) | |
| O9 | 0.07409 (11) | 0.46866 (6) | 0.15273 (11) | 0.01076 (18) | |
| O10 | 0.29028 (11) | 0.57855 (5) | 0.19818 (10) | 0.00894 (17) | |
| O11 | 0.23407 (11) | 0.52699 (6) | 0.90078 (10) | 0.01074 (19) | |
| O12 | 0.37999 (10) | 0.43772 (5) | 0.12022 (10) | 0.00883 (16) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| As1 | 0.00437 (3) | 0.00356 (3) | 0.00453 (3) | 0.00007 (3) | −0.00035 (3) | −0.00027 (3) |
| As2 | 0.00554 (3) | 0.00472 (4) | 0.00447 (3) | −0.00042 (3) | 0.00028 (3) | 0.00036 (3) |
| As3 | 0.00642 (4) | 0.00336 (3) | 0.00628 (3) | −0.00018 (3) | −0.00018 (3) | −0.00019 (3) |
| K1 | 0.00698 (7) | 0.01015 (8) | 0.00797 (6) | −0.00039 (6) | 0.00040 (5) | 0.00102 (6) |
| K2 | 0.00765 (8) | 0.00734 (8) | 0.00955 (7) | 0.00014 (6) | 0.00017 (6) | 0.00078 (6) |
| K3 | 0.01516 (10) | 0.00792 (9) | 0.01230 (8) | −0.00147 (7) | −0.00295 (7) | −0.00020 (6) |
| Al1 | 0.00487 (12) | 0.00439 (12) | 0.00550 (10) | −0.00023 (9) | −0.00019 (9) | −0.00024 (9) |
| Al2 | 0.00592 (12) | 0.00438 (12) | 0.00532 (10) | 0.00071 (10) | −0.00068 (9) | −0.00031 (9) |
| O1 | 0.0078 (3) | 0.0069 (3) | 0.0101 (3) | 0.0029 (2) | −0.0011 (2) | −0.0004 (2) |
| O2 | 0.0062 (3) | 0.0094 (3) | 0.0067 (2) | −0.0020 (2) | 0.0017 (2) | −0.0006 (2) |
| O3 | 0.0075 (2) | 0.0046 (2) | 0.0072 (2) | −0.0014 (2) | −0.0019 (2) | 0.0005 (2) |
| O4 | 0.0078 (3) | 0.0089 (3) | 0.0052 (2) | 0.0016 (2) | −0.0019 (2) | −0.0019 (2) |
| O5 | 0.0193 (4) | 0.0088 (3) | 0.0138 (3) | 0.0037 (3) | 0.0083 (3) | −0.0016 (3) |
| O6 | 0.0101 (3) | 0.0274 (5) | 0.0130 (3) | −0.0102 (3) | −0.0069 (3) | 0.0108 (3) |
| O7 | 0.0121 (3) | 0.0056 (3) | 0.0136 (3) | 0.0006 (2) | 0.0041 (2) | 0.0026 (2) |
| O8 | 0.0094 (3) | 0.0144 (4) | 0.0043 (2) | −0.0031 (3) | −0.0001 (2) | 0.0002 (2) |
| O9 | 0.0084 (3) | 0.0083 (3) | 0.0155 (3) | −0.0023 (2) | 0.0031 (2) | 0.0001 (3) |
| O10 | 0.0131 (3) | 0.0043 (3) | 0.0094 (3) | −0.0018 (2) | 0.0003 (2) | −0.0010 (2) |
| O11 | 0.0138 (3) | 0.0121 (4) | 0.0063 (3) | 0.0010 (3) | −0.0004 (2) | 0.0016 (2) |
| O12 | 0.0085 (3) | 0.0044 (3) | 0.0136 (3) | 0.0006 (2) | −0.0019 (2) | 0.0002 (2) |
Geometric parameters (Å, °)
| K1—O1i | 2.7084 (9) | Al1—O8 | 1.7443 (9) |
| K1—O3ii | 2.8524 (8) | Al1—O12 | 1.7396 (9) |
| K1—O5 | 2.6496 (11) | Al2—O4 | 1.7485 (9) |
| K1—O9ii | 2.9964 (10) | Al2—O6vii | 1.7415 (11) |
| K1—O9iii | 2.8747 (10) | Al2—O7 | 1.7616 (10) |
| K1—O10iii | 2.9344 (10) | Al2—O10viii | 1.7373 (10) |
| K1—O11 | 2.9814 (10) | As1—O1 | 1.6429 (9) |
| K2—O1iv | 2.7885 (9) | As1—O2 | 1.6875 (8) |
| K2—O2v | 3.0134 (9) | As1—O3 | 1.6936 (8) |
| K2—O7iv | 3.0260 (10) | As1—O4ix | 1.6893 (8) |
| K2—O8v | 2.8939 (10) | As2—O5 | 1.6352 (10) |
| K2—O9v | 2.6362 (10) | As2—O6 | 1.6812 (11) |
| K2—O11vi | 2.7384 (10) | As2—O7 | 1.6909 (9) |
| K3—O1iv | 2.7360 (9) | As2—O8 | 1.6867 (8) |
| K3—O5vi | 2.7515 (10) | As3—O9 | 1.6519 (9) |
| K3—O11vi | 2.5921 (9) | As3—O10 | 1.7098 (9) |
| K3—O12 | 2.7989 (10) | As3—O11ix | 1.6515 (9) |
| Al1—O2iv | 1.7376 (9) | As3—O12 | 1.7285 (9) |
| Al1—O3 | 1.7578 (9) | ||
| O1i—K1—O3ii | 86.82 (3) | O1iv—K3—O5vi | 126.59 (3) |
| O1i—K1—O5 | 144.51 (3) | O1iv—K3—O11vi | 93.38 (3) |
| O1i—K1—O9ii | 73.59 (3) | O1iv—K3—O12 | 92.90 (3) |
| O1i—K1—O9iii | 115.72 (3) | O5vi—K3—O11vi | 92.38 (3) |
| O1i—K1—O10iii | 69.80 (3) | O5vi—K3—O12 | 136.86 (3) |
| O1i—K1—O11 | 128.11 (3) | O11vi—K3—O12 | 102.95 (3) |
| O3ii—K1—O5 | 88.21 (3) | O2iv—Al1—O3 | 112.21 (4) |
| O3ii—K1—O9ii | 69.16 (3) | O2iv—Al1—O8 | 104.42 (4) |
| O3ii—K1—O9iii | 154.71 (3) | O2iv—Al1—O12 | 109.74 (5) |
| O3ii—K1—O10iii | 148.77 (2) | O3—Al1—O8 | 102.53 (4) |
| O3ii—K1—O11 | 84.81 (2) | O3—Al1—O12 | 109.11 (4) |
| O5—K1—O9ii | 136.06 (3) | O8—Al1—O12 | 118.68 (5) |
| O5—K1—O9iii | 79.72 (3) | O4—Al2—O6vii | 107.43 (5) |
| O5—K1—O10iii | 98.85 (3) | O4—Al2—O7 | 111.59 (4) |
| O5—K1—O11 | 86.28 (3) | O4—Al2—O10viii | 108.39 (4) |
| O9ii—K1—O9iii | 104.81 (3) | O6vii—Al2—O7 | 112.68 (5) |
| O9ii—K1—O10iii | 120.24 (3) | O6vii—Al2—O10viii | 110.77 (6) |
| O9ii—K1—O11 | 55.61 (2) | O7—Al2—O10viii | 105.95 (5) |
| O9iii—K1—O10iii | 56.01 (3) | O1—As1—O2 | 110.66 (4) |
| O9iii—K1—O11 | 72.39 (3) | O1—As1—O3 | 114.32 (4) |
| O10iii—K1—O11 | 125.79 (3) | O1—As1—O4ix | 115.08 (4) |
| O1iv—K2—O2v | 68.86 (2) | O2—As1—O3 | 105.42 (4) |
| O1iv—K2—O7iv | 112.20 (3) | O2—As1—O4ix | 106.85 (4) |
| O1iv—K2—O8v | 119.86 (2) | O3—As1—O4ix | 103.72 (4) |
| O1iv—K2—O9v | 78.24 (3) | O5—As2—O6 | 113.25 (6) |
| O1iv—K2—O11vi | 89.12 (3) | O5—As2—O7 | 115.67 (5) |
| O2v—K2—O7iv | 95.73 (2) | O5—As2—O8 | 109.52 (5) |
| O2v—K2—O8v | 65.61 (2) | O6—As2—O7 | 108.07 (5) |
| O2v—K2—O9v | 107.28 (3) | O6—As2—O8 | 105.28 (4) |
| O2v—K2—O11vi | 154.06 (3) | O7—As2—O8 | 104.19 (5) |
| O7iv—K2—O8v | 109.45 (3) | O9—As3—O10 | 108.48 (5) |
| O7iv—K2—O9v | 156.96 (3) | O9—As3—O11ix | 115.16 (5) |
| O7iv—K2—O11vi | 79.62 (3) | O9—As3—O12 | 109.34 (4) |
| O8v—K2—O9v | 79.97 (3) | O10—As3—O11ix | 111.13 (5) |
| O8v—K2—O11vi | 140.08 (3) | O10—As3—O12 | 101.71 (4) |
| O9v—K2—O11vi | 80.10 (3) | O11ix—As3—O12 | 110.16 (5) |
Symmetry codes: (i) x−1/2, −y+1/2, z+1; (ii) x, y, z+1; (iii) −x, −y+1, z+1/2; (iv) x+1/2, −y+1/2, z; (v) x+1, y, z; (vi) −x+1, −y+1, z−1/2; (vii) x−1/2, −y+1/2, z; (viii) −x+1/2, y−1/2, z+1/2; (ix) x, y, z−1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2112).
References
- Anantharamulu, N., Koteswara Rao, K., Rambabu, G., Vijaya Kumar, B., Velchuri Radha & Vithal, M. (2011). J. Mater. Sci. 46, 2821–2837.
- Beaurain, M., Astier, R., Lee, A. van der & Armand, P. (2008). Acta Cryst. C64, i5–i8. [DOI] [PubMed]
- Boughzala, H., Driss, A. & Jouini, T. (1997). Acta Cryst. C53, 3–5.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
- Bruker (2008). SAINT-Plus, APEX2 and SADABS Bruker AXS Inc., Madison, Wisconsin, USA
- Devi, R. N. & Vidyasagar, K. (2000). Inorg. Chem. 39, 2391–2396. [DOI] [PubMed]
- Dowty, E. (2006). ATOMS Shape Software, Kingsport, Tennessee, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Yakubovich, O. V., Steele, I. & Kireev, V. V. (2008). Cryst. Rep. 53, 952–959.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812000438/gw2112sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000438/gw2112Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


