Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 7;68(Pt 2):m92–m93. doi: 10.1107/S1600536811054614

The chain structure of [Ni(C4H2O4)(C12H8N2)(H2O)]n with different types of fumarate bridging

Anna Uhrinová a, Juraj Kuchár a,*, Juraj Černák a
PMCID: PMC3274842  PMID: 22346891

Abstract

Using modified solvothermal conditions (longer cooling time), beside previously characterized dark-green crystals of [Ni(C4H2O4)(C12H8N2)] (main product), a few light-green crystals of the polymeric title compound, catena-poly[[aqua­(1,10-phenanthroline-κ2 N,N′)nickel(II)]-μ-fumarato-κ2 O:O′-[aqua­(1,10-phenanthroline-κ2 N,N′)nickel(II)]-μ-fumarato-κ4 O,O′:O′′,O′′′], [Ni(C4H2O4)(C12H8N2)(H2O)]n were isolated. Its crystal structure is made up from zigzag chains, propagating in [001], in which the Ni2+ ions are linked alternatively by μ2-fumarato and bis-chelating fumarato bridging ligands. The Ni2+ ion is coordinated in a deformed octa­hedral geometry by one chelating 1,10-phenanthroline ligand, one aqua ligand in a cis position with regard to both N-donor atoms and by two different fumarato ligands, each residing with its central C=C bond on an inversion centre, occupying the remaining coordination sites in a fac fashion. The chains thus formed are linked by O—H⋯O hydrogen bonds and π–π inter­actions between the aromatic rings of the phenanthroline ligands with a shortest ring centroid separation of 3.4787 (10) Å.

Related literature

For Ni2+ complexes containing both fum and phen ligands (fum = fumarato, phen = 1,10-phenanthroline), see: Černák et al. (2009) for [Ni(fum)(phen)] with a two-dimensional structure and Ma et al. (2003) for [Ni2(phen)4(fum)(H2O)2]fum·16H2O with an ionic structure containing a dinuclear complex cation. For an Ni2+ complex, [Ni2(fum)2(py)6]·2py (py = pyridine), exhibiting a one-dimensional structure with the same type of fumarato bridging ligands, see: Mori et al. (2004); Marsh et al. (2005).graphic file with name e-68-00m92-scheme1.jpg

Experimental

Crystal data

  • [Ni(C4H2O4)(C12H8N2)(H2O)]

  • M r = 370.99

  • Triclinic, Inline graphic

  • a = 7.8998 (4) Å

  • b = 9.8238 (5) Å

  • c = 11.3815 (8) Å

  • α = 68.677 (6)°

  • β = 70.141 (6)°

  • γ = 89.655 (5)°

  • V = 766.89 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 173 K

  • 0.46 × 0.27 × 0.12 mm

Data collection

  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: analytical [Clark & Reid (1995) in CrysAlis PRO (Oxford Diffraction, 2009)] T min = 0.658, T max = 0.866

  • 12619 measured reflections

  • 3173 independent reflections

  • 2972 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022

  • wR(F 2) = 0.057

  • S = 1.04

  • 3173 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811054614/wm2574sup1.cif

e-68-00m92-sup1.cif (26.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811054614/wm2574Isup2.hkl

e-68-00m92-Isup2.hkl (152.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O5 0.85 1.78 2.6085 (15) 163
O1—H2O1⋯O2i 0.85 1.93 2.7820 (15) 177

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support by the Slovak Ministry of Education (VEGA project No. 1/0089/09) is gratefully acknowledged.

supplementary crystallographic information

Comment

Within our broader study on low-dimensional compounds of Ni(II) in the aqueous-alcoholic system Ni(II)-fum-phen (fum = fumarato, phen = 1,10-phenanthroline) using solvothermal conditions, we have isolated the title compound [Ni(fum)(H2O)(phen)] (I) in the form of few light-green crystals accompanying the major dark-green crystalline product [Ni(fum)(phen)] (II) (Černák et al., 2009). Such dark-green crystals were only formed if the reaction mixture was cooled from 373 K down to room temperature during 8 h. When the cooling time was elongated to 20 h, some light-green crystals of (I) likewise appeared.

The crystal structure of (I) is built up of zigzag chains exhibiting the backbone composition [–Ni–fum–Ni–fum–]n propagating parallel to the [001] direction. Within the chain the Ni2+ ions are linked alternatively by µ2-fumarato and bis-chelating fumarato bridging ligands (Fig. 1, Fig. 2). The same type of chains is observed in [Ni2(fum)2(py)6].2py (Mori et al., 2004; Marsh et al., 2005). On the other hand, the dark-green [Ni(fum)(phen)] exhibits a two-dimensional crystal structure built up of dimers of crystallographically non-equivalent Ni2+ ions linked by two different types of bridging fumarato ligands (Černák et al., 2009).

The Ni2+ central atom in (I) is octahedrally coordinated in a deformed NiN2O3O donor set by one chelating phen ligand, one aqua ligand placed in cis-position with regard to both donor nitrogen atoms of the phen ligand, and three coordination sites are occupied by oxygen atoms originating from two chemically different fum ligands, one coordinating through one O-donor atom, and the second one coordinating in a chelating fashion (Fig. 2). The presence of an additional aqua ligand in the coordination sphere of the Ni(II) atom lowers the number of free coordination sites available for polymerization from four in (II) to three in (I). Consequently, a crystal structure with lower dimensionality is realised.

The mean value of the Ni–N bond lengths (2.07 (2) Å) is close to that observed in [Ni2(phen)4(fum)(H2O)2]fum.16H2O (2.096 (1) Å) (Ma et al., 2003). In (I) two crystallographically independent fum2- ligands in the asymmetric unit reside on an inversion centre. The chelating fum ligand coordinates in an unsymmetrical fashion and the corresponding Ni—O bonds are longer with respect to the Ni—O bond of the monodentately coordinating fum ligand (Table 2). A similar situation as to the Ni–O bond lengths was observed in [Ni2(fum)2(py)6].2py (Mori et al., 2004). The Ni—O bond length of the aqua ligand exhibits an usual value (Ma et al., 2003).

Both hydrogen atoms of the aqua ligand are involved in rather strong hydrogen bonds of the O—H···O type (Fig. 3, Table 3). The H1O1 atom forms an intermolecular hydrogen bond with the not coordinating O5 atom from the carboxylate group. On the other hand, the H2O1 atom participates in an intermolecular hydrogen bond with the O2 atom (symmetry code 2 - x, 1 - y, -z) linking neighbouring chains; due to symmetry operators (centre of symmetry) the chains are linked with a pair of such hydrogen bond forming a ring arrangement R22(8).

Moreover, the chains interact also through π—π interactions between the aromatic rings of the phen ligands (Fig. 3). The distances between the centres of gravity, Cgi of the aromatic rings, are: 3.7942 (11) Å for Cg1—Cg1iv (Cg1 is the centre of gravity of the aromatic ring formed by atoms N1, C10, C9, C3, C2, C1) and 3.4787 (10) Å for Cg2···Cg2v (Cg2 is the centre of gravity of the aromatic ring formed by atoms N2, C8, C7, C6, C11, C12). Similar π—π interactions were also observed in the structure of the dark-green [Ni(fum)(phen)] (Černák et al., 2009).

Experimental

A Parr reaction vessel (total volume 20 cm3) was filled with 6 cm3 of aqueous-ethanolic solution (1:1) containing 238 mg (1 mmol) of NiCl2.6H2O, 116 mg (1 mmol) of fumaric acid and 396 mg (2 mmol) of 1,10-phenantroline. Finally, 112 mg (2 mmol) of solid KOH was added. The closed reaction vessel was heated by uniform heating rate to 373 K during one hour and then was left at this temperature for 80 h. The reaction vessel was then uniformly cooled to room temperature during 20 h. The product consisted of dark-green crystals of [Ni(fum)(phen)] (main product) and few light-green crystals of [Ni(fum)(H2O)(phen)]. The mixture of crystals was separated from the mother liquor by filtration and dried at laboratory temperature. The light-green crystals were picked up and used for X-ray study.

Refinement

The hydrogen atoms from the water molecule were located in a difference map, but their positions were constrained by geometric parameters to values of 0.850 Å for the O—H bond. The isotropic displacement parameters of the hydrogen atoms were tied to those of the parent oxygen atoms with Uiso(H) = 1.5Ueq(O). The hydrogen atoms of the phenantroline ligand and fumarato(2-) ligand were positioned geometrically with C—H = 0.950 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Coordination environment around the Ni2+ ion in (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: i) 1 - x, 1 - y, -z; ii) 1 - x, 1 - y, 1 - z.]

Fig. 2.

Fig. 2.

View of the hydrogen bonding system in (I) linking neighbouring chains. Colour code Ni: green, O: red, N: blue, H: white spheres. Hydrogen atoms of the fumarato ligands are omitted as well as the phen ligands but their N donor atoms for clarity.

Fig. 3.

Fig. 3.

View of the π—π interactions between the phen ligands in (I). [Symmetry codes: iv) 2 - x, -y, 1 - z; v) 2 - x, -y, -z.]

Crystal data

[Ni(C4H2O4)(C12H8N2)(H2O)] Z = 2
Mr = 370.99 F(000) = 380
Triclinic, P1 Dx = 1.607 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.8998 (4) Å Cell parameters from 9394 reflections
b = 9.8238 (5) Å θ = 3.3–29.4°
c = 11.3815 (8) Å µ = 1.29 mm1
α = 68.677 (6)° T = 173 K
β = 70.141 (6)° Prism, light-green
γ = 89.655 (5)° 0.46 × 0.27 × 0.12 mm
V = 766.89 (8) Å3

Data collection

Oxford Diffraction Xcalibur Sapphire2 diffractometer 3173 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2972 reflections with I > 2σ(I)
graphite Rint = 0.022
Detector resolution: 8.3438 pixels mm-1 θmax = 26.5°, θmin = 3.3°
ω scans h = −9→9
Absorption correction: analytical [Clark & Reid (1995) in CrysAlis PRO (Oxford Diffraction, 2009)] k = −12→12
Tmin = 0.658, Tmax = 0.866 l = −14→14
12619 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0268P)2 + 0.3218P] where P = (Fo2 + 2Fc2)/3
3173 reflections (Δ/σ)max = 0.001
217 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.83574 (2) 0.255869 (19) 0.208342 (18) 0.02046 (7)
O1 1.05052 (14) 0.37310 (12) 0.20856 (11) 0.0254 (2)
H1O1 0.9946 0.4226 0.2539 0.038*
H2O1 1.1060 0.4310 0.1268 0.038*
O2 0.77961 (14) 0.43278 (11) 0.05893 (11) 0.0246 (2)
O3 0.60066 (15) 0.22129 (11) 0.15882 (11) 0.0256 (2)
O4 0.65578 (15) 0.30773 (12) 0.35633 (11) 0.0297 (2)
O5 0.82308 (16) 0.48624 (13) 0.36300 (12) 0.0351 (3)
N1 0.85113 (17) 0.05252 (14) 0.34101 (12) 0.0240 (3)
N2 1.02443 (17) 0.18287 (13) 0.07328 (12) 0.0215 (3)
C1 0.7599 (2) −0.01127 (18) 0.47314 (16) 0.0311 (4)
H1 0.6707 0.0385 0.5153 0.037*
C2 0.7899 (3) −0.1492 (2) 0.55307 (17) 0.0373 (4)
H2 0.7221 −0.1916 0.6476 0.045*
C3 0.9174 (3) −0.22201 (19) 0.49376 (18) 0.0370 (4)
H3 0.9389 −0.3155 0.5469 0.044*
C4 1.1536 (3) −0.22521 (19) 0.28194 (19) 0.0375 (4)
H4 1.1810 −0.3187 0.3300 0.045*
C5 1.2444 (2) −0.15787 (19) 0.14727 (19) 0.0351 (4)
H5 1.3352 −0.2046 0.1026 0.042*
C6 1.2939 (2) 0.05748 (19) −0.07064 (18) 0.0321 (4)
H6 1.3850 0.0156 −0.1209 0.039*
C7 1.2463 (2) 0.19111 (18) −0.13455 (16) 0.0311 (4)
H7 1.3051 0.2431 −0.2294 0.037*
C8 1.1105 (2) 0.25035 (17) −0.05917 (15) 0.0263 (3)
H8 1.0786 0.3429 −0.1048 0.032*
C9 1.0168 (2) −0.15825 (17) 0.35373 (17) 0.0291 (3)
C10 0.9774 (2) −0.01967 (16) 0.28145 (15) 0.0228 (3)
C11 1.2066 (2) −0.01704 (17) 0.07015 (17) 0.0271 (3)
C12 1.0727 (2) 0.05085 (16) 0.13778 (15) 0.0221 (3)
C13 0.6336 (2) 0.35570 (16) 0.08395 (14) 0.0219 (3)
C14 0.4973 (2) 0.42762 (17) 0.02642 (16) 0.0249 (3)
H14 0.4064 0.3645 0.0340 0.030*
C15 0.6762 (2) 0.41233 (16) 0.39247 (15) 0.0247 (3)
C16 0.5037 (2) 0.44635 (18) 0.47800 (16) 0.0280 (3)
H16 0.4000 0.3893 0.4987 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.01891 (11) 0.02183 (11) 0.01896 (10) 0.00744 (7) −0.00459 (8) −0.00816 (8)
O1 0.0204 (6) 0.0307 (6) 0.0219 (5) 0.0058 (4) −0.0051 (4) −0.0091 (4)
O2 0.0189 (6) 0.0254 (5) 0.0260 (5) 0.0056 (4) −0.0082 (5) −0.0062 (4)
O3 0.0252 (6) 0.0218 (5) 0.0281 (6) 0.0065 (4) −0.0082 (5) −0.0093 (4)
O4 0.0258 (6) 0.0322 (6) 0.0296 (6) 0.0048 (5) −0.0008 (5) −0.0186 (5)
O5 0.0254 (6) 0.0413 (7) 0.0394 (7) 0.0038 (5) −0.0029 (5) −0.0247 (6)
N1 0.0222 (7) 0.0256 (6) 0.0207 (6) 0.0043 (5) −0.0059 (5) −0.0068 (5)
N2 0.0209 (7) 0.0216 (6) 0.0208 (6) 0.0059 (5) −0.0059 (5) −0.0082 (5)
C1 0.0282 (9) 0.0358 (9) 0.0236 (8) 0.0030 (7) −0.0054 (7) −0.0088 (7)
C2 0.0402 (11) 0.0378 (9) 0.0226 (8) −0.0031 (8) −0.0091 (8) −0.0011 (7)
C3 0.0461 (11) 0.0285 (8) 0.0326 (9) 0.0039 (8) −0.0212 (9) −0.0012 (7)
C4 0.0444 (11) 0.0270 (8) 0.0482 (11) 0.0179 (8) −0.0262 (9) −0.0139 (8)
C5 0.0329 (10) 0.0330 (9) 0.0480 (10) 0.0185 (7) −0.0175 (8) −0.0226 (8)
C6 0.0255 (9) 0.0365 (9) 0.0368 (9) 0.0070 (7) −0.0043 (7) −0.0233 (8)
C7 0.0297 (9) 0.0340 (9) 0.0235 (8) 0.0004 (7) −0.0006 (7) −0.0126 (7)
C8 0.0288 (9) 0.0247 (7) 0.0224 (7) 0.0040 (6) −0.0069 (7) −0.0079 (6)
C9 0.0323 (9) 0.0249 (7) 0.0327 (8) 0.0061 (7) −0.0182 (7) −0.0078 (7)
C10 0.0219 (8) 0.0222 (7) 0.0249 (7) 0.0043 (6) −0.0104 (6) −0.0080 (6)
C11 0.0233 (8) 0.0280 (8) 0.0348 (8) 0.0077 (6) −0.0108 (7) −0.0172 (7)
C12 0.0201 (8) 0.0226 (7) 0.0257 (7) 0.0049 (6) −0.0090 (6) −0.0111 (6)
C13 0.0202 (8) 0.0246 (7) 0.0204 (7) 0.0080 (6) −0.0047 (6) −0.0106 (6)
C14 0.0177 (8) 0.0291 (7) 0.0283 (8) 0.0061 (6) −0.0079 (6) −0.0119 (6)
C15 0.0263 (8) 0.0258 (7) 0.0193 (7) 0.0080 (6) −0.0049 (6) −0.0090 (6)
C16 0.0223 (8) 0.0322 (8) 0.0260 (8) 0.0036 (6) −0.0016 (7) −0.0140 (7)

Geometric parameters (Å, °)

Ni1—O4 2.0263 (10) C3—H3 0.9500
Ni1—N1 2.0527 (12) C4—C5 1.350 (3)
Ni1—O1 2.0576 (11) C4—C9 1.432 (2)
Ni1—N2 2.0811 (12) C4—H4 0.9500
Ni1—O2 2.1124 (10) C5—C11 1.436 (2)
Ni1—O3 2.1771 (11) C5—H5 0.9500
O1—H1O1 0.8500 C6—C7 1.371 (2)
O1—H2O1 0.8500 C6—C11 1.408 (2)
O2—C13 1.2711 (18) C6—H6 0.9500
O3—C13 1.2540 (18) C7—C8 1.398 (2)
O4—C15 1.2671 (18) C7—H7 0.9500
O5—C15 1.2470 (19) C8—H8 0.9500
N1—C1 1.326 (2) C9—C10 1.408 (2)
N1—C10 1.3563 (19) C10—C12 1.438 (2)
N2—C8 1.3253 (19) C11—C12 1.403 (2)
N2—C12 1.3631 (19) C13—C14 1.490 (2)
C1—C2 1.402 (2) C14—C14i 1.322 (3)
C1—H1 0.9500 C14—H14 0.9127
C2—C3 1.365 (3) C15—C16 1.498 (2)
C2—H2 0.9500 C16—C16ii 1.315 (3)
C3—C9 1.407 (2) C16—H16 0.9056
O4—Ni1—N1 93.22 (5) C5—C4—C9 121.22 (15)
O4—Ni1—O1 92.07 (4) C5—C4—H4 119.4
N1—Ni1—O1 98.29 (5) C9—C4—H4 119.4
O4—Ni1—N2 173.69 (5) C4—C5—C11 121.40 (15)
N1—Ni1—N2 80.59 (5) C4—C5—H5 119.3
O1—Ni1—N2 87.68 (5) C11—C5—H5 119.3
O4—Ni1—O2 90.64 (4) C7—C6—C11 119.38 (14)
N1—Ni1—O2 165.34 (5) C7—C6—H6 120.3
O1—Ni1—O2 95.70 (4) C11—C6—H6 120.3
N2—Ni1—O2 95.66 (4) C6—C7—C8 119.52 (15)
O4—Ni1—O3 84.64 (4) C6—C7—H7 120.2
N1—Ni1—O3 104.64 (5) C8—C7—H7 120.2
O1—Ni1—O3 156.97 (4) N2—C8—C7 122.79 (14)
N2—Ni1—O3 98.02 (4) N2—C8—H8 118.6
O2—Ni1—O3 61.64 (4) C7—C8—H8 118.6
O4—Ni1—C13 84.46 (5) C3—C9—C10 116.94 (15)
N1—Ni1—C13 135.31 (5) C3—C9—C4 124.20 (15)
O1—Ni1—C13 126.36 (5) C10—C9—C4 118.86 (15)
N2—Ni1—C13 100.76 (5) N1—C10—C9 122.99 (14)
O2—Ni1—C13 31.19 (4) N1—C10—C12 117.23 (13)
O3—Ni1—C13 30.68 (4) C9—C10—C12 119.78 (14)
Ni1—O1—H1O1 100.8 C12—C11—C6 117.24 (14)
Ni1—O1—H2O1 106.0 C12—C11—C5 118.60 (15)
H1O1—O1—H2O1 109.3 C6—C11—C5 124.15 (15)
C13—O2—Ni1 89.42 (8) N2—C12—C11 123.04 (14)
C13—O3—Ni1 86.97 (9) N2—C12—C10 116.83 (13)
C15—O4—Ni1 127.93 (10) C11—C12—C10 120.13 (13)
C1—N1—C10 118.30 (13) O3—C13—O2 121.07 (13)
C1—N1—Ni1 128.64 (11) O3—C13—C14 119.63 (13)
C10—N1—Ni1 113.02 (10) O2—C13—C14 119.28 (13)
C8—N2—C12 118.02 (13) O3—C13—Ni1 62.35 (8)
C8—N2—Ni1 129.72 (10) O2—C13—Ni1 59.39 (7)
C12—N2—Ni1 112.00 (10) C14—C13—Ni1 170.01 (10)
N1—C1—C2 122.60 (16) C14i—C14—C13 122.62 (18)
N1—C1—H1 118.7 C14i—C14—H14 122.2
C2—C1—H1 118.7 C13—C14—H14 115.2
C3—C2—C1 119.33 (16) O5—C15—O4 126.05 (14)
C3—C2—H2 120.3 O5—C15—C16 119.26 (13)
C1—C2—H2 120.3 O4—C15—C16 114.68 (14)
C2—C3—C9 119.83 (15) C16ii—C16—C15 123.7 (2)
C2—C3—H3 120.1 C16ii—C16—H16 119.5
C9—C3—H3 120.1 C15—C16—H16 116.8
O4—Ni1—O2—C13 −78.18 (8) C2—C3—C9—C4 179.82 (16)
N1—Ni1—O2—C13 27.1 (2) C5—C4—C9—C3 −179.90 (17)
O1—Ni1—O2—C13 −170.32 (8) C5—C4—C9—C10 0.0 (2)
N2—Ni1—O2—C13 101.46 (8) C1—N1—C10—C9 −0.6 (2)
O3—Ni1—O2—C13 5.38 (8) Ni1—N1—C10—C9 177.36 (12)
O4—Ni1—O3—C13 88.17 (9) C1—N1—C10—C12 179.14 (14)
N1—Ni1—O3—C13 −179.90 (8) Ni1—N1—C10—C12 −2.93 (16)
O1—Ni1—O3—C13 5.53 (15) C3—C9—C10—N1 0.4 (2)
N2—Ni1—O3—C13 −97.59 (9) C4—C9—C10—N1 −179.51 (14)
O2—Ni1—O3—C13 −5.46 (8) C3—C9—C10—C12 −179.28 (14)
N1—Ni1—O4—C15 117.90 (13) C4—C9—C10—C12 0.8 (2)
O1—Ni1—O4—C15 19.47 (13) C7—C6—C11—C12 0.4 (2)
O2—Ni1—O4—C15 −76.25 (13) C7—C6—C11—C5 179.43 (15)
O3—Ni1—O4—C15 −137.69 (13) C4—C5—C11—C12 0.3 (2)
C13—Ni1—O4—C15 −106.87 (13) C4—C5—C11—C6 −178.73 (17)
O4—Ni1—N1—C1 3.18 (14) C8—N2—C12—C11 −0.9 (2)
O1—Ni1—N1—C1 95.75 (14) Ni1—N2—C12—C11 −175.67 (11)
N2—Ni1—N1—C1 −178.02 (14) C8—N2—C12—C10 179.84 (13)
O2—Ni1—N1—C1 −101.8 (2) Ni1—N2—C12—C10 5.10 (16)
O3—Ni1—N1—C1 −82.11 (14) C6—C11—C12—N2 0.4 (2)
C13—Ni1—N1—C1 −82.18 (15) C5—C11—C12—N2 −178.66 (14)
O4—Ni1—N1—C10 −174.48 (10) C6—C11—C12—C10 179.62 (14)
O1—Ni1—N1—C10 −81.92 (10) C5—C11—C12—C10 0.6 (2)
N2—Ni1—N1—C10 4.31 (10) N1—C10—C12—N2 −1.5 (2)
O2—Ni1—N1—C10 80.5 (2) C9—C10—C12—N2 178.18 (13)
O3—Ni1—N1—C10 100.22 (10) N1—C10—C12—C11 179.20 (13)
C13—Ni1—N1—C10 100.15 (11) C9—C10—C12—C11 −1.1 (2)
N1—Ni1—N2—C8 −179.04 (14) Ni1—O3—C13—O2 9.36 (13)
O1—Ni1—N2—C8 −80.24 (14) Ni1—O3—C13—C14 −168.84 (12)
O2—Ni1—N2—C8 15.26 (14) Ni1—O2—C13—O3 −9.63 (14)
O3—Ni1—N2—C8 77.35 (14) Ni1—O2—C13—C14 168.57 (12)
C13—Ni1—N2—C8 46.36 (14) O4—Ni1—C13—O3 −88.83 (8)
N1—Ni1—N2—C12 −5.08 (10) N1—Ni1—C13—O3 0.14 (11)
O1—Ni1—N2—C12 93.73 (10) O1—Ni1—C13—O3 −177.32 (7)
O2—Ni1—N2—C12 −170.78 (10) N2—Ni1—C13—O3 87.59 (9)
O3—Ni1—N2—C12 −108.69 (10) O2—Ni1—C13—O3 170.69 (13)
C13—Ni1—N2—C12 −139.67 (10) O4—Ni1—C13—O2 100.48 (8)
C10—N1—C1—C2 0.4 (2) N1—Ni1—C13—O2 −170.55 (8)
Ni1—N1—C1—C2 −177.15 (12) O1—Ni1—C13—O2 11.99 (10)
N1—C1—C2—C3 −0.1 (3) N2—Ni1—C13—O2 −83.10 (8)
C1—C2—C3—C9 0.0 (3) O3—Ni1—C13—O2 −170.69 (13)
C9—C4—C5—C11 −0.6 (3) O3—C13—C14—C14i 164.10 (18)
C11—C6—C7—C8 −0.7 (2) O2—C13—C14—C14i −14.1 (3)
C12—N2—C8—C7 0.6 (2) Ni1—O4—C15—O5 −15.4 (2)
Ni1—N2—C8—C7 174.28 (11) Ni1—O4—C15—C16 164.36 (10)
C6—C7—C8—N2 0.2 (2) O5—C15—C16—C16ii 1.9 (3)
C2—C3—C9—C10 −0.1 (2) O4—C15—C16—C16ii −177.9 (2)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1O1···O5 0.85 1.78 2.6085 (15) 163
O1—H2O1···O2iii 0.85 1.93 2.7820 (15) 177

Symmetry codes: (iii) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2574).

References

  1. Černák, J., Pavlová, A., Orendáčová, A., Kajňaková, M. & Kuchár, J. (2009). Polyhedron, 28, 2893–2898.
  2. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  3. Crystal Impact (2009). DIAMOND, Crystal Impact, D-53002 Bonn, Germany.
  4. Ma, J.-F., Yang, J. & Liu, J.-F. (2003). Acta Cryst. E59, m900–m902.
  5. Marsh, R. E. (2005). Acta Cryst. B61, 359. [DOI] [PubMed]
  6. Mori, W., Takamizawa, S., Kato, C. N., Ohmura, T. & Sato, T. (2004). Microporous Mesoporous Mater. 73, 31–46.
  7. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Abingdon, England.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811054614/wm2574sup1.cif

e-68-00m92-sup1.cif (26.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811054614/wm2574Isup2.hkl

e-68-00m92-Isup2.hkl (152.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES